
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A 2 7 4 855

Ž %.JAN 2 6 1994

THESIS

A Functional Bar Code Inventory System
for

Marine Corps Systems Command

by

Richard M. Hancock

September, 1993

Thesis Advisor: William Haga
Co-Advisor: Shu S. Liao

Approved for public release; distribution is unlimited.

94-02119•..•.• . .. Ill 11111111 1111 1111 11111 11111 111 Ili jill

REPORT DOCUMENTATION PAGE ForM Approved 0OB No. 0704

blic reporting burden for this collection of information is estimated to average 1 hour per response, including
he time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed,
nd completing and reviewing the collection of information. Send coents regarding this burden estimte or any
ther aspect of this collection of information, including suggestions for reducing this burden, to Washington
eadquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite
204. Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
0704-0199) Washington DC 20503.

AGENCY USE ONLY (Leave 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED
blank) Sep 1993 Master's Thesis, Final

. TITLE AND SUBTITLE A Functional Bar Code S. FUNDING NUMBERS
Inventory System for Marine Corps Systems Command

6 AUTHOR(S) Richard M. Hancock

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the
uthor and do not reflect the official policy or position of the
epartment of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for 12b. DISTRIBUTION CODE
ublic release; distribution unlimited A

13. ABSTRACT (maximum 200 words)

Marine Corps Systems Command, located in Quantico, Virginia, maintains
large amount of computer assets to support its vast and varied

operations. This property requires accurate record keeping to assure
ccountability of each item throughout its lifetime, from initial
cquisition through disposal. This thesis designs and implements a Bar
.ode Inventory System (BCIS) to support the management and accountability
f the command's assets. The BCIS is a fully tested, menu driven system
esigned to increase the efficiency and effectiveness of the inventory
rocess.

4. SUBJECT TERMS Bar Code Inventory, Intermec, Interscan, 15. NUMBER OF
PCIRL,Ada,Interactive Reader Language(IRL) . PAGES 127

16. PRICE CODE
7. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF

CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standad Form 298 (Rev. 2-89)
Prcdbed by ANSI Std- 2V-18

Approved for public release; distribution is unlimited.

A Functional Bar Code Inventory System
for

Marine Corps Systems Command

by

Richard M. Hancock
Captain, United States Marine Corps

B.S., Randolph-Macon College, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAy• POSTGRADUATEl SHOOL
• / September 199•/ ,1

Author:

Approved by:

"Shu S. Liao;Thesis Co-Advisor

Department of Adces

ABS TR4ACT

Marine Corps Systems Command, located in Quantico,

Virginia, maintains a large amount of computer assets to

support its vast and varied operations. This property

requires accurate record keeping to assure accountability of

each item throughout its lifetime, form initial acquisition

through disposal. This thesis designs and implements a Bar

Code Inventory System (BCIS) to support the management and

accountability of the command's assets. The BCIS is a fully

tested, menu driven system designed to increase the

efficiency and effectiveness of the inventory process.

Accesion For

NTIS CRA&I
QUOWTY •5p•CTD B DTIC TAB "r

=T0 Unannounced 0l
Justification

By ...
Distribution I

Availability Codes

Avail and Ior
Dist Special

111ooo

TABLE OF CONTENTS

I.• INTRODUCT ION ... 1

A . BACKGROUND ... 1

B. PROBLEMS WITH MANUAL INVENTORY SYSTEM 1

C. GOALS AND OBJECTIVES ... 2

D. CHAPTER DESCRIPTIONS ... 2

II. SYSTEM ANALYSIS .. 4
A . SUMVEY PHASE .. 4

1. Methodology .. 4

2 . Application .. 5
B. STUDY PHA SE ... 6

1. Methodology .. 6

2 . Application .. 6

C. DEFINITION PHASE .. 11

1. Methodology .. 11

2 . Application .. 12

III. SYSTEM DESIGN .. 17
A . INTRODUCTION .. 17

B. OBJECT AND ATTRIBUTE IDENTIFICATION 18

C. OPERATIONS WITH OBJECTS ... 19

D. VISIBILITY RELATIONSHIPS ... 21

E. INTERFACE SPECIFICATIONS ... 21
IV. IMPLEMENTATION .. 24

A. CREATING SERIAL NUMBER FILE PHASE 24

B. INVENTORY PHASE .. 26

C. CREATE REPORTS PHASE ... 27

D. PRINT BAR CODE LABELS ... 29

E. SYSTEM INTEGRATION .. 30

V. CONCLUSION .. 34

APPENDIX A: SOURCE CODE 8... 35

APPENDIX B: BCIS USER'S MANUAL G..... 98
A . INTRODUCTION .. 98

B. INSTALLATION AND SETUP .. 98

.iv

1. Compatibility and Requirements 98
2. Installation .. 99

3 . Setup ... 100

C. STARTING THE SYSTEM ... 101

D. DOWNLOAD FILE TO BAR CODE READER 102

1. Establish a Connection .. 102

2. Set Protocol On Reader .. 102
3. Place CMR Listing in Proper Directory 104
4. Initiating Download Option 104

5. Configure PCIRL for Communication 105
6. Downloading File to Reader 105

E. CONDUCTING THE INVENTORY .. 106
F. RECEIVE INVENTORY RESULTS 109

1. Receive Found File ... 110

2. Receive Not Found File .. 112
3. Receive Both Files ... 114
4. Configure Intrscan for Communication 115

G . PRINT REPORTS ... 115

H. PRINT BAR CODE LABELS .. 117

I. EXIT THE SYSTEM ... 118

LIST OF REFERENCES .. 119

INITIAL DISTRIBUTION LIST 120

V

I. ImTROWCTION

A. BACKGRWND

Marine Corps Systems Command (MARCORSYSCOM), located in

Quantico, Virginia, is responsible for the acquisition and

accountability of computer assets. Their current Consolidated

Memorandum Receipt (CMR)--a listing of all assets owned by the

command--is in excess of thirty pages with approximately 3,000

computer assets. The size of the CMR is further complicated by

the fact that many of these assets are portable, thus hampering

the command's ability to maintain proper accountability of these

assets.

The implementation of an automated inventory system will

increase the efficiency and effectiveness of the inventory

process and provide the command with the resources

necessary to maintain proper accountability of its computer

assets.

B. PROBLEIS WITH MANURL INVENTORY SYSTEM

The manual system takes approximately six weeks to complete

an inventory. Many of the items are portable, thus complicating

the inventory process. Because of the length of time it takes to

complete an inventory, many of the assets move from location to

location during the inventory. This results in some assets being

I

inventoried twice while other assets are never inventoried. This

problem hampers the command's ability to maintain proper

accountability of its computer assets.

C. GOALS AND OBJECTIVES

The primary goal of this project is to design, develop and

implement a bar code inventory system which could assist

MARCORSYSCOM in conducting an accurate and timely inventory of

its computer assets. Automating the inventory process will

provide substantial time savings and significantly increase the

accuracy of the inventories.

The automated system was designed using the Object-Oriented

Design approach and was implemented using Ada and Interative

Reader Language (IRL) programming languages. The system accepts

input from a bar code scanner, manual keypunch entries, and files

downloaded from the local area network (LAN). The Bar Code

Inventory System (BCIS) produces bar code labels and generates

periodic reports on the status of the assets within the command.

The BCIS is a fully integrated, menu driven system with

established communication between the various hardware

platforms--personal computer, bar code reader and bar code

printer.

D. CAPTRm DESCRIPTIONS

Chapter II studies the old system and its problems,

defines business needs and requirements, and evaluates

2

alternative solutions. The step by step strategies employed

during this analysis is covered in this chanter.

Chapter III will review the System Design methodology used in

designing the Bar Code Inventory System (BCIS). The four phases

associated with Object-Oriented Design, object identification,

defining operations with each object, determination of

relationships between objects, and developing interface

specifications, will be covered.

Chapter IV covers the implementation of the BCIS. This

chapter discuses how the four phases of the system were

implemented--creating a serial number file to download to the bar

code reader, conducting an inventory using the reader, processing

the results of the inventory into reports, and printing bar code

labels--and problems encountered while integrating these phases

into the BCIS.

Chapter V, the conclusion, determines whether the system is

operational and ready for implementation at MARCORSYSCOM.

Appendix A includes all the source code that was incorporated

in the BCIS. This section includes the programs written in Ada,

IRL, and the Batch File composed to integrate the system.

Appendix B is the user's manual. This chapter provides the

documentation necessary to install and operate the Bar Code

Inventory System.

3

II. SYSTUI ANLYSIS

The purpose of systems analysis is to study the current

business system and its problems, define business needs and

requirements, and evaluate alternative solutions. The three

phases used in the analysis of the Bar Code Inventory System

(BCIS) will be discussed in this section. The step-by-step

strategies for completing each phase will be discussed followed

by how that phase was applied in developing the BCIS.

A. SURVEY PHASE

1. Methodology

A project is initiated with a preliminary analysis of

project scope and feasibility. The survey phase determines

whether significant resources should be committed to the future

phases of the life cycle. KDuring the Survey Phase, we define

the scope of the project, perceived problems and opportunities,

business and technical constraints, perceived project goals, and

possible solutions" [Whitten, Bentley and Barlow, 1989, p.87].

Information gathered during this phase, although probably not

very detailed--or even acurate--will be the starting point for a

detailed Systems Analysis [Page-Jones, 1988, p.21].

4

2. Application

The goal of this project was to develop an automated

inventory system which could assist Marine Corps Systems Command

(MARCORSYSCOM) in conducting an accurate and timely inventory of

existing assets. Captain Lang, the Resource Manager for the

Information Systems Management Division at MARCORSYSCOM, wanted

to limit the scope of the inventory system to include only

serialized assets--such as computers, printers, monitors, etc.

These types of assets have a high dollar value and represent the

majority of items on Captain Lang's Consolidated Memorandum

Receipt (CMR)-- a listing of all assets under his control. The

current CMR is in excess of thirty pages with approximately 3,000

serialized items that must be inventoried quarterly. The size of

the CMR is further complicated by the fact that many of these

assets are portable, thus making the inventory process extremely

difficult. The proper accountability of these assets is very

important and requires a great deal of time and effort. The

problems identified with the current system and the potential

benefits of automating this process will be discussed in the

following sections of this chapter.

It was decided that the scope of this work warranted

development as an individual thesis project. The core of the

work would be performed on a personal computer owned by the

author. MARCORSYSCOM provided the hardware necessary to automate

the current system to include: a bar code reader, scanner, bar

code printer, and manuals. The cost of the additional hardware

was considered negligible in comparison to the benefits expected

with a fully automated invenLory system. A time span of nine

months, with commencement in December 1992 and system completion

by August 1993, was considered feasible. The Survey Phase was

accomplished during a single interview with Captain Lang that

took approximately one hour.

B. STUDY PHASE

1. Methodology

During this phase facts are collected about how the

current system functions. Problems with the current system are

identified and potential opportunities are diagnosed in an

attempt to improve the process. Data are collected using

interviews and modeling techniques to learn about the system.

"You need to understand the existing system, manual or

computerized, before you can design and build a new system."

[Whitten, Bentley, and Barlow, 1989, p. 9 0]

2. Application

On 14 December 1992, the author took a four day research

trip to MARCORSYSCOM, which is located in Quantico, Virginia.

Captain Lang was interviewed to acquire an understanding of the

current inventory process. captain Lang is accountable for all

the assets assigned to his division. He is responsible for

conducting quarterly inventories and possesses a thorough

6

understanding of the process. During the interview the author

developed a detailed understanding of the current system.

Physical data flow diagrams (DFDs) were drafted to document the

processes and the flow of data and information through the

existing system (see Figures 2.1 through 2.3). These models show

not only what a system does, but also how the system is

physically implemented. The use of these models helped the

author grasp the inputs, outputs, and processes, and the

relationships among the different processes of the system.

After evaluating the models and data collected during the

research trip, the following problems were identified:

1. Current system is inefficient resulting in a

slow inventory process;

2. Poor accountability; and

3. Duplication of effort.

The process of manually searching the CMR for a serial

number that matches the serial number on the asset was determined

to be the most inefficient and time-consuming process in the

system. The current CMR is in excess of thirty pages with

approximately 3,000 serial numbers. The CMR is organized in such

a way that each item, for example a monitor, can have many

National Stock Numbers (NSNs). Under each NSN there may be many

serial numbers. In order to efficiently match the serial number

of the asset with the serial number on the CMR the person

7

up VRec~imied rsputs

ocessSerial IConmter Generated Sre
1R Report

FIGl 2.1 Physical Context Data Flow Diagram

8

""annot0ates CnR File

Recsn iled

Checks Anfte Qtqh~d ds
for transfer \ terAa] I s /aof asset Rec \or drop doct naual 11te nacSerialr ~~~~o MCesAntae 09P withJ

rcNce serýuisto

t erial 8 and

Depet .s uescription

FIGURE 2.2 Physical Data Flow Diagram (Level 1)

9

RO mtchs dscr on R.0 fvr~as

010

conducting the inventory must know the NSN of the asset. This

information is not obtainable in the current system, forcing the

user to search each NSN for a serial number that matches. For

some items, such as monitors and printers, the user must search

through several pages of serial numbers to find a match. This

results in an inventory process that takes approximately six

weeks to complete.

By automating the process of searching the CMR for a

serial number, the problem of duplication of effort and poor

accountability could also be reduced. For example, many of the

items are portable, thus complicating the inventory process.

Because of the length of time it takes to complete an inventory,

many of the assets move from location to location during the

inventory. This results in some assets being inventoried twice

(duplication of effort) while other assets are never inventoried.

This creates a problem in the accountability of the command's

assets. By automating the current process the inventory could be

completed in less than a week, lessening the problem of assets

moving during the inventory. Automating the current process will

increase the efficiency and accuracy of the current system.

C. DEFINITION PHASE

1. Methodology

The goal of the definition phase is to develop a detailed

definition of the requirements and objectives of the proposed

11

system. Requirements are the blueprint that will be used to

design and implement the new system. Before moving on to

development, the developer must know exactly what the system is

supposed to do. *The purpose of the Definition Phase is to

identify what the improved system must be able to do without

specifying how the system could or will do ito[Whitten,Bentley

and Barlow, 1989, p.156].

It is not only important that the system is built

correctly, but vital that the correct system is built. The

analyst should actively involve all of the end-users who were

identified during the Study Phase. It is important to give

end-users at every level of the organization the opportunity to

define goals, objectives, and information system needs. Proper

definition of the requirements is the first step toward

preventing future maintenance nightmares.

2. Application

The research trip identified the end user's information

needs and what functions the new system is expected to perform.

A six-week tuzi-naround time to complete an inventory was

considered unsatisfact-ry. The major goal of the new system was

to reduce the amount of time it takes to conduct an inventory and

thus increase the accuracy of the inventory.

Marine Corps Systems Command wanted to use bar code

technology to completely autcmate the inventory process. The

system needed to read the serial number of the asset, search the

12

CMR for a match, and produce a report specifying which serial

numbers were found. By using bar code technology, MARCORSYSCOM

felt the inventory process could be condensed into one week.

These basic requirements were used to model the new

system using logical DFDs (see Figures 2.4 and 2.5). Logical DFDs

are implementation-independent models that display the essential

requirements of the system--those requirements that must be

fulfilled no matter how the system might be implemented. These

models were presented to the end user and the following detailed

system requirements were drafted:

1. System will be a fully automated bar code inventory system

and will meet all specified requirements;

2. System will use bar code technology;

3. System will function on an IBM compatible desktop computer;

4. System will interface with the bar code reader and printer;

5. System scope will be limited to serialized assets: such as
computers, laptops, monitors, etc.;

6. User will provide a CMR file;

7. CMR will be obtained from an ASCII file contained in an
external file memory source;

8. The values of all serial numbers are of alpha-numeric type;

9. A serial number is a unique identifier--assets will not
have the same serial number;

10. The system will produce bar code labels to be affixed to
each asset. User will have the option of producing a batch
of labels from the CMR or individual labels by manual
keypunch entry;

s Rconciled
CM1R

ewt amd•e~l, xteption Report

CnR

Serial I

FZI L 2.4 Logical Context Data Flow Diagrm

14

8up 19 OR Ong Serial I
apt ler I al

Dunbers:s rial File

Reader
Inlut

Reports i a

ornatted
I der

Produce WPM ornit Files ýort rReports for KOPOrts e

i ý
lar Code
eader orted
output ietder

Fi e

jar Code

raderSerial I eal File nput ornataept ýor 16
Assets I natch a

779M 2,§ Logical Data Flow Diagram (Lwal 1)

15

11. System will prompt the user if the item scanned is
not on the CMR. The user will be prompted for a
description of the item and its location;

12. System output will be in CMR format with found serial
numbers annotated;

13. System will produce an exception report, listing the
serial numbers inventoried but not on the CMR;

14. System will be implemented in Ada or DBase III;

15. System will be menu driven and be user friendly (will
not require computer experience to operate the system);

16. System will be fully documented and a users manual will
accompany the system; and

17. System will be designed with ease of modification or
upgrade in mind.

16

MI. SYS=U DESIGN

A. INTRODUCTION

The purpose of the design phase is to design a software

solution for the new system, including a definition of the

interfaces among units and a detailed procedural flow. During

system design, the target system is organized into subsystems

based on both the analysis structure and the proposed

architecture. The system designer must decide what performance

characteristics to optimize, choose a strategy to attack the

problem, and make tentative resource allocations.

An Object-Oriented Design (OOD) strategy was employed to

design the Bar Code Inventory System. This method of design

results in a software solution that closely resembles the

real-world problem. Object- oriented Design incorporates three

important software design concepts: abstraction, information

hiding and modularity. "All design methods strive for software

that exhibits these fundamental characteristics, but only OOD

provides a mechanism that enables the designer to achieve all

three without complexity or compromise" [Pressman, 1992, p.395].

The Design Phase uses the results of the System Analysis

Phase to complete several sequential steps. These steps and

their results are presented in the remainder of this chapter.

17

B. OBJECT AND ATTRIBUTE IDENTIFICATION

The system requirements and logical data flow diagrams were

used to identify the objects judged critical to the production of

the Bar Code Inventory System, (see Figure 3.1). The objects

identified were derived from nouns used in describing the system.

An object is a component which exists in the real world--a

person, place, thing, occurrence, role, or event--that is mapped

into the software domain. Objects are typically producers or

Obiecti
CMR Listing File Name

Status

Serial Number Value
Position
Type
Found

Bar Code Reader Input File Name
Status

Bar Code Reader Output File Name
Status

Inventory None

Report File Name
Type

File Processor File Name
Type

Label Format
Size
Serial Number
Quantity

Serial Number File File Name
Size

FIGURE 3.1 Objects and Attributes of BCIS

18

consumers of information or an information item. Only those

objects that played a critical role in the system's purpose were

included, as these are the items which will eventually be

implemented as part of the solution.

Additionally, the defining characteristics or attributes of

the objects were defined. Attributes are values or features of

an object that distinguish one instance of an object from

another. For example, the attribute Value helps distinguish one

serial number from another. Identifying the attributes of an

object help the programmer define the functional relationship

between two instances of the same object. For example, the

system will produce two different reports--a CMR report and an

exception report. The attribute File Name and Type tell the

programmer that the two reports can be distinguished by the file

name and the type of report required.

C. OPERATIONS WITH OBJECTS

The major objects of interest and their attributes have been

identified, but that is not sufficient to establish the design of

the software solution. The next step is to determine the

operations associated with each object, (see Figure 3.2). This

was accomplished by considering which operations can be performed

on or by a particular object. In identifying the operations

associated with an object the designer can characterize the

external behavior of that object. This external view captures

19

CMR Listing Open
Reset
Close
Get Serial Number
Get Line

Serial Number Create
Mark
Return Value
Compare

Bar Code Reader Input Create
Open
Close
Add Serial Number
Get Serial Number

Bar Code Reader Output Open
Close
Get Serial Number
Get Description
Get Location

Inventory Get Serial Number
Match Serial Numbers
Get Location of Asset
Get Description of Asset

Report Create
Close
Add Line
Format Exception Report

File Processor Format Serial Number File
Format CMR Report File
Format Exception File
Format Labels File

Label Create
Open
Close
Add Serial Number
Get Serial Number
Print Label

Serial Number File Create
Insert Serial Number
Sort by Value
Sort by Position
Mark Serial Number Found
Remove Serial Number

URE 3.2 Objects and Operations of BCIS

20

the behavior of an object from the perspective of its clients

without concern for how the object will be implemented. By

separating the behavior of the object from its implementation

the principles of abstraction and information hiding are applied.

D. VISIBILITY RELATIONSHIPS

The next step in the Object-Oriented Design process is the

determination of how these objects relate to one another. To

establish the visibility relationship, each object is examined to

determine which objects it depends on and what objects depend on

it.

Figure 3.3 is a graphical representation of the relationships

between the various objects in the system. An object that points

to another signifies its dependence on that object. For example,

the object BCIS depends on all the other objects in the system to

perform its intended functions. Understanding the relationships

between objects simplifies the implementation process and

enforces the principles of modularity and cohesion. Taking

advantage of these inherent relationships will result in a

well-structured system that is easy to modify.

E. INTERFACE SPECIFICATIONS

The last step in the development process is to establish a

detailed design of the BCIS. The results of the prior

steps--Object and Attribute Identification, Operations

21

Hunber OfR 4- Aset
Listking

+tInvnr LaeSerial
r Co

FIGURRE 3.3 BClS Visibility liagzma

22

with Objects and Visibility Relationships--were used to organize

the target system into subsystems.

First, a separate package was created for each object. A

package is a separate compilation unit consisting of two parts: a

package body and a package specification. During this step the

package specification of each object was drafted. The package

specification can be regarded as the package's *shop-window" that

says what the package has to offer the potential user.

Next, the operations associated with each object were

incorporated into the package specifications. This allows the

designer to display what operations a package will perform,

without writing any code.

Finally, how a package interfaces with the other parts of the

program was specified. This was accomplished by declaring the

Visibility Relationships between packages in the package

specifications. The package specifications for each object are

listed in alphabetical order in Appendix A.

23

IV. DWT.UIDFEATIOn

The Implementation Phase used the results of the Analysis and

Design Phases to create an automated inventory system. During

implementation the system was divided into four phases--creating

a serial number file to download to the bar code reader,

conducting an inventory using the reader, processing the results

of the inventory into reports, and printing the bar code labels

that will be attached to the assets prior to an inventory.

Each phase was implemented separately and then integrated

into the Bar Code Inventory System. This chapter will present

how each phase was developed and the problems that were

encountered during integration.

A. CREATING SERIAL INUBER FILE PHASE

This portion of the system opens the CMR File--an ASCII file

containing a list of assets that need to be inventoried--and

searches the file for serial numbers. When a serial number is

found it is copied to a file called Readin. During the transfer

process the serial number is converted from the type string to a

private type. Private type is an Ada convention which limits the

operations that can be performed on an object outside of the

object's package.

In this case, declaring serial number as a private type

prevents the user from modifying a serial number outside the

24

package Serial Number. This incorporates abstraction and

information hiding and prevents a serial number from being

inadvertently modified. The private type serial number is a

record that stores the value of the serial number and its

position in the CMR.

Once all the serial numbers are transferred to the Readin

File, an array is created. The serial numbers, along with their

original CMR position, are read into the array. Inside the array

the serial numbers are formatted for the bar code reader. This

consists of removing any blanks that might be in front of a

serial number and sorting the serial numbers in alpha-numeric

order. The formatted serial numbers are then read back into the

Readin File for download to the bar code reader.

The Create Serial Number Phase of the system resides on a

personal computer and incorporates the following packages

(objects) identified during the System Design Phase--CMR Listing,

Serial Number, Serial Number File, Bar Code Reader Input and File

Processor. The operations necessary to extract and format the

serial numbers from the CMR were implemented using Ada

programming Tanquage. A program called DOWNLOAD acts as a driver

and calls all the operations needed to create the serial number

file.

25

B. IMVPITORY PHASE

The Inventory Phase was implemented using Interactive

Reader Language (IRL) and resides in the bar code reader. This

program has two major functions: conducting an inventory of the

command's serialized assets and transmitting the results of the

inventory back to a file on a personal computer.

During the Inventory Function, the user is prompted to enter

a serial number. The reader receives the serial number that is

scanned by the user and searches File A for a match. File A

contains the serial numbers extracted from the CMR during the

Create Serial Number File Phase. If the serial number scanned

matches a serial number on the CMR, the program searches File B,

the Match File, to see if the asset was already inventoried. If

the assets has not been inventoried, the serial number is saved

in File B. If the asset has already been inventoried, the serial

number is not saved and the user is asked to scan another asset.

If a serial number does not match the serial numbers

extracted from the CMR, the reader emits a warning beep and

prompts the user to enter a description and the location of the

asset. This information along with the serial number is saved in

File C, the Not Found File. The inventory portion of the program

is terminated when the user enters IF3' instead of a serial

number.

During Transmit the user is asked which file to transmit--the

Match or Not Found File. A file is then transmitted to a

26

personal computer one serial number at a time. If the user

attempts to transmit a file that does not contain any records an

error message is displayed and the user is again prompted which

file to transmit. The Transmit portion of the program is

terminated when the user turns off the reader.

C. CUTZT hIPMO flASK

The Create Reports Phase consists of two programs--one for

the CMR Report and another for the Exception Report.

The program that creates the CMR Report is called CMR_RPT.

This program was implemented using Ada and resides on a personal

computer. The packages (objects) used to create this portion of

the system are: CMR Listing, Serial Number, File Processor, Bar

Code Reader Input, Serial Number File, Reader Output, and Report.

The program CMRRPT acts as a driver and calls the operations

that reside in these packages to perform the functions needed to

convert the results of the inventory into a CMR Report.

This program opens the CMR File and copies the serial numbers

along with their CMR position into an array. The Match File is

then opened and each serial number is matched with the serial

numbers in the array. When a match is found the serial number in

the array is flagged as found--a blank space and an 'F, are

appended to the end of the serial number. When all the serial

numbers in the Found File have been matched, the file is closed

and the array is sorted by original CMR position.

27

The CMR File is again opened and each line is copied to the

CMR Report File. If a line contains serial numbers the program

copies the serial numbers contained in the array (i.e., the

flagged serial numbers) to the CMR Report File instead of the

original serial numbers. The result is a report that is

identical to the original CMR with the serial numbers found

during the inventory marked as found.

The program that creates the Exception Report is called

X_REPORT. This program creates an Exception Report File and

formats the report for input. This consists of giving the report

a title, setting the columns in the report and giving each column

a header. The program then opens the Not Found File--a file

uploaded from the reader containing assets found during the

inventory that were not on the CMR. The serial number,

description and location of an asset are extracted from the Not

Found File and transferred to the correct position in the

Exception Report.

The Exception Report program resides on a personal computer

and incorporates the following packages (objects) identified

during the System Design Phase--Bar Code Reader Output, Report

and File Processor. The operations necessary to create the

report were implemented using Ada programming language.

28

D. PRINT BAR CODELABELS

The Print Bar Code Labels Phase consists of two programs--one

for creating individual labels and another to produce a batch of

labels from the CMR listing. Both of the programs were

implemented using Ada and reside on a personal computer.

The program that generates individual labels is called

PRN_INDIV. This program acts as a driver and calls the

operations that reside in the package Labels to create bar code

labels. The application generates a screen and queries the user

to enter a serial number or Oquito to exit. If the user enters a

serial number, the application appends the necessary control

characters to the serial number and sends this data to the COM2

port of the personal computer. The Intermec Bar Code Printer

accepts the control characters and serial number and produces a

bar code label.

The program that generates a batch of bar code labels from a

CMR listing is called PRN_BATCH. This program opens the CMR and

extracts all the serial numbers into a file called Label. Once

all the serial numbers are transferred to the Label File, an

array is created. The serial numbers are then read into the

array to be formatted for the bar code printer. This consists of

removing any blanks from the front of a serial number and sorting

the serial numbers in alpha-numeric order.

The application appends the necessary control characters to

the serial numbers in the array. The COM2 port is then opened

29

for communication with the bar code printer. The serial numbers

with control characters are sent to the printer via the COM port.

This portion of the system incorporates the following

packages (objects) identified during the System Design Phase--CMR

Listing, Labels, Serial Numbers, Serial Number File, and File

Processor. The operations contained in these packages were used

to generate the batch bar code labels.

Z. SYSTD INTNQRATION

The four phases of the system were developed and tested

separately and then integrated into a single bar code inventory

system. The communication among the various hardware

platforms--personal computer, bar code reader, and bar code

printer--proved to be the most difficult portion of implementing

the system.

The integrated system needed to pass various files across

hardware platforms for the system to perform the functions

specified in the System Requirements. Various approaches were

tried in an attempt to establish a common protocol and initialize

the COM port--set the baud rate, parity, number of data bits and

stop bits--on the computer.

A communication driver was developed using QBasic to

establish communication between a bar code reader and personal

computer. This driver initialized the COM port on the computer

to match the settings on the reader. The driver then appended

30

control characters to the file being transmitted which would

start and stop communication. This approach proved to be

ineffective. The communication driver failed to establish

communication between the personal computer and reader.

A commercial communication package called Crosstalk was used

to establish communication between the personal computer and

reader. This software package allows the user to establish a

direct connection with other hardware platforms. The program

initializes the COM port of the computer and allows the user to

select a protocol to establish communication. The problem with

this approach was the protocols provided in the software package

did not match the protocols in the reader. Communication between

the computer and reader was never established using this

approach.

Intermec Corporation, the manufacturer of the bar code reader

and printer, provided a software package called Interscan. This

communications package was designed to establish communication

between a personal computer and Intermec hardware. The software

initializes the COM port in the computer and the reader. During

the initial tests this program effectively established

communication between the personal computer and reader. When a

large Serial Number File, with three thousand serial numbers, was

downloaded to the reader the program failed. The package would

initiate communication but would "time out" before the entire

file could be downloaded. After further testing, it was

31

established that the problem originated from bugs in the

Interscan software.

However, the Interscan software proved to be effective

uploading the Match and Not Found Files from the reader to the

personal computer. The software furnishes special IRL commands

that allow the programmer to send the uploaded data files to

specitied files on the computer. This capability cannot be

achieved with other software applications. The Bar Code

Inventory System utilizes the Interscan application for uploading

data files from a reader to a personal computer.

Intermec Corporation provided another software package called

PCIRL. This software was designed as an IRL development system.

It allows users to create and compile IRL programs on a personal

computer. The application also provides the capability of

downloading programs and files to the reader. This package was

able to download the large Serial Number File to the reader. The

PCIRL software is utilized in the Bar Code Inventory system to

download files from the computer to a bar code reader.

When the communication problem was solved the system was

integrated into the Bar Code Inventory System. The System

Requirements specified the system must be menu driven and user

friendly. A batch file was developed to create a menu system

that would execute the necessary programs when the user selected

an option. The batch file was compiled into a .COM file to

increase the processing speed of the program. The .COM file,

32

called BCIS, controls the Bar Code Inventory System and is the

program that integrated the four phases of the system.

33

V. COCLWSION

This thesis developed a Bar Code Inventory System (BCIS) for

Marine Corps Systems Command (MARCORSYSCOM). Ada and Interactive

Reader Language were used as the programming languages to

implement this system.

The BCIS is a fully integrated, menu-driven system that will

automate the inventory process at MARCORSYSCOM. This system

extracts the serial numbers from the command's CMR--a listing of

all assets owned by the command--and downloads them into a bar

code reader. During the inventory, the system informs the user

if the asset inventoried is not on the CMR. The system saves the

information gathered during the inventory and produces two

Reports--a CMR and an Exception Report. The system also produces

the bar code labels, which are attached to the command's assets.

The BCIS is fully tested and ready for implementation at

MARCORSYSCOM. The system meets all the requirements specified by

Captain Lang, the Resource Manager for the Information Systems

Management Division at MARCORSYSCOM.

34

APPUIDIX A

SOURCE CODE

This appendix contains the source code used to implement the

Bar Code Inventory System. The Programs, Package Definition

Specifications, Package Definition Bodies, and batch files are

included in this section and are listed in alphabetical order.

35

rem-i

rem BCIS.COM
rem
rem - This program integrated the BCIS by creating a menu driven system that calls all the
rem - other programs.
remn

@ECHO OFF

rem-
rem - This batch file automates the Bar Code Inventory System by creating a menu system and
rem - calling all the applications needed to perform the desired function.
rem.

rem - The DRAWMAIN procedure creates the main menu for the system. The user is prompted
rem - to enter the number in front of the wanted function
rem ------ -----,_--_

:DRAWMAIN rem Procedure DRAWMAIN
CLRSCR 07
CLRSCR 40 120 7 60 rem creates a red box
SETPOS 120 rem sets postion of cursor
DRAWBOX 4E 417 2 rem puts outline around box
SETPOS 4 28

TEXTOUT 4F "BAR CODE INVENTORY SYSTEM" rem outputs text to screen
CLRSCR IF 10 15 23 64 rem creates a blue box
SETPOS 12 27
TEXTOUT IF "I. Download File to Reader" rem outputs text to screen
SETPOS 14 27
TEXTOUT IF 12. Receive Inventory Results"
SETPOS 16 27
TEXTOUT IF "3. Print Reports"
SETPOS 18 27
TEXTOUT IF "4. Print Bar Code Labels"
SETPOS 20 27
TEXTOUT IF "5. Exit to DOS"
SETPOS 22 40
TEXTOUT IF "ENTER (1..5)"

rem-,

rem - Procedure GETKEY uses the program BATCHKEY.COM (must be in same dir) to get the
rem - users selection and assigns the users selection to an errorlevel which is used to branch to
rem - the desired procedure
rem--

36

:GETKEY
BATCHKEY "12345"
IF ERRORLEVEL 5 GOTO END rem if user enters 5 goto end procedure
IF ERRORLEVEL 4 GOTO LABELS rem if user enters 4 goto labels procedure
IF ERRORLEVEL 3 GOTO REPORTS rem if user enters 3 goto reports procedure
IF ERRORLEVEL 2 GOTO RECEIVE rem if user enters 2 goto receive procedure
IF ERRORLEVEL 1 GOTO DOWNLOAD rem if user enters I goto download procedure
GOTO GETKEY rem if user enters wrong choice try again

rem---
rem - Procedure DOWNLOAD changes to the Ada directory where the Ada program Download
rem - is located. Starts the program which will produce the file READIN which will be
rem - downloaded to the reader using PCIRL. This procedure copys this file to C:\PCIRL then
rem - changes to that directory and starts the application. When the user is finished downloading
rem - the is returned to the main menu
rem------------------- - ------------ -

:DOWNLOAD
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "EXTRATING SERIAL NUMBERS FROM CMR
CD\BCIS\ADA
CALL DOWNLOAD
COPY READIN C:\PCIRL >NUL
CD\PCIRL
CALL PC1RI.
CD\BCIS
GOTO DRAWMAIN

rem----------- --------

rem - The RECEIVE procedure creates the menu for the reveive portion of the system. The user
rem - is prompted to enter the number in front of the wanted function
rem -------------------------

:RECEIVE
CLRSCR 07
CLRSCR IF 1 20 7 60 rem creates a blue box
SETPOS 1 20 rem sets postion of cursor
DRAWBOX ID 417 2 rem puts outline around box
SETPOS 4 30
TEXTOUT IF "RECEIVE FILE OPTIONS"
CLRSCR 3F 10 15 23 64 rem creates a cyan box
SETPOS 12 27
TEXTOUT 3F "1. Receive Found File"
SETPOS 15 27
TEXTOUT 3F "2. Receive Not Found File"

37

SETPOS 18 27
TEXTOUT 3F "3. Receive Both Files"
SETPOS 21 27
TEXTOUT 3F "4. Exit to Main Menu"
SETPOS 23 40
"TEXTOUT 3F "ENTER (I..4)"

rem-----
rem - Procedure RECEIVEGET uses the program BATCHKEY.COM (must be in same dir) to
rem - get the users selection and assigns the users selection to an enarlevel which is used to
rem - bra- h to the desired procedure
rem-

".RECEIVEGET
BATCHKEY "1234"
IF ERRORLEVEL 4 GOTO DRAWMAIN rein if user enters 4 goto labels procedure
IF ERRORLEVEL 3 GOTO BOTH rem if user enters 3 goto repo•ts procedure
IF ERRORLEVEL 2 GOTO NOTFOUND rem if user enters 2 goto receive procedure
IF ERRORLEVEL I GOTO FOUND rem if user enters I goto download procedure
GOTO RECEIVEGET rem if wrong value entered waits for another try

rem---

rem - The FOUND procedure changes to the INTRSCAN directory where the found will be
rem - uploaded from the reader. This procedure copies an existing found tMle to found.bak then
rem - deletes the found file. The new found fide is then uploaded from the bar code reader. The
rem - fMle is copied to the ada directory and the program CMRRPT is executed. When
rem - completed the user is returned to the receive menu
rem--

YFOUND
CD\INTRSCAN
COPY FOUND FOUND.BAK >NUL
DEL FOUND >NUL
CALL INTRSCAN rem execute intrscan program
CD\1BCIS
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "CREATING CMR REPORT
CD\INTRSCAN
COPY FOUND C:ABCIS\ADA >NUL
CD\BCIS\ADA
CALL CMRRPT
CD\BCIS
GOTO RECEIVE rem returns to receive menu

38

rem - The NOTFOUND procedure changes to the INTRSCAN directory where the NOFIND file
rem - will be uploaded from the reader. This procedure copies an existing NOFIND file to
rem - NOFIND.BAK then deletes the NOFIND file. The new NOFIND file is then uploaded
rem - from the bar code reader. The file is copied to the ada directory and the program
rem - XREPORT is executed. When completed the user is returned to the receive menu
rem - - - --------n

:NOTFOUND
CD\1NTRSCAN
COPY NOFIND NOFIND.BAK >NUL
DEL NOFIND >NUL
CALL INTRSCAN
CD\BCIS
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "CREATING EXCEPTION REPORT
CD\INTRSCAN
COPY NOFIND C:\BCIS\ADA >NUL
CD\BCIS\ADA
CALL XREPORT
CD\BCIS
GOTO RECEIVE rem returns to receive menu

rem ... - ------- - --

rem - The BOTH procedure performs the same functions as the FOUND and NOT FOUND
rem - procedures. It combines the operations of those two procedures into a single procedure
rem - for the users convenience.
rem ---

:BOTH
CD\INTRSCAN
COPY FOUND FOUND.BAK >NUL
DEL FOUND >NUL
COPY NOFIND NOFIND.BAK >NUL
DEL NOFIND >NUL
CALL INTRSCAN
CD\BCIS
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "CREATING CMR AN) EXCEPTION REPORTS
CD\INTRSCAN
COPY FOUND C:\BCIS\ADA >NUL
COPY NOFIND C:\BCIS\ADA >NI1L
CD\BCIS\ADA
CAI,. CMRRPT

39

CALL XREPORT
CD\BCIS
GOTO RECEIVE rem returns to receive menu

rem-
rem - The REPORTS procedure creates the menu for the reports portion of the sytem. Thbe user
rem - is prompted to enter the number in front of the wanted fimction

":REPORTS
CLRSCR 07
CLRSCR 74 120 7 60 rem creates a white box
SETPOS 120 rem sets postion of cursor
DRAWBOX 74 417 2 rem puts outline around box
SETPOS 4 30
TEXTOUT 74 "PRINT REPORT OPTIONS"
CLRSCR 3F 10 15 23 64 rem creates a cyan box
SETPOS 12 27
TEXTOUT 3F "1. Print CMR Report"
SETPOS 15 27
TEXTOUT 3F "2. Print Exception Report"
SETPOS 18 27
TEXTOUT 3F "3. Print Both Reports"
SETPOS 21 27
TEXTOUT 3F "4. Exit to Main Menu"
SETPOS 23 40
TEXTOUT 3F "ENTER (1..4)"

rem-- ---- ---------------
rem - Procedure REPORTGET uses the program BATCHKEY.COM (must be in same dir) to
rem - get the users selection and assigns the users selection to an errorlevel which is used to
rem - branch to the desired procedure
rem --- -------

AREPORTGET
BATCHKEY "1234"
IF ERRORLEVEL 4 GOTO DRAWMAIN rem if user enters 4 goto main menu
IF ERRORLEVEL 3 GOTO BOTHRPTS rem if user enters 3 goto bothrpts procedure
IF ERRORLEVEL 2 GOTO XRPT rem if user enters 2 goto XRPT procedure
IF ERRORLEVEL I GOTO CMRRPT rem if user enters I goto CMRRPT procedure
GOTO REPORTGET rem if wrong value entered waits for another try

remn

rem - The CMRRPT procedure displays a message on the screen that the CMR REPORT is
rem - printing. The procedure changes to the directory where REPORT is located and sends the
rem - report to the printer. When fmished the procedure returns the user to the reports menu.
rem4

40

:CMRRPT
CLRSCR 07
SETPOS 22 38
TEXTOUT 4F "PRESS ENTER.
SETPOS 23 35
TEXTOUT 4F "PRINING CMR REPORT
SETPOS 40 1
CD\BCIS\ADA
PRINT REPORT
CD\BCIS
GOTO REPORTS

rem -ii

rem - The XRPT procedure displays a message on the screen that the XREPORT is printing.
rem - The procedure changes to the directory where XREPORT is located and send the report to
rem - the printer. When finished the procedure returns the user to the reots menu.
remn

jRPT
CLRSCR 07
SETPOS 22 42
TEXTOUT 4F "PRESS ENTER
SETPOS 23 35
TEXTOUT 4F "PRINT2..JG EXCEPTION REPORT
SETPOS 40 1
CD\BCIS\ADA
PRINT XREPORT
CD\BCIS
GOTO REPORTS

rem - The procedure BOTHRPTS prints both the CMR REPORT and the XREPORT. It
rem - performs the same operations as the above two procedures and is included for user
rem - convenience.
rem_

BOTHRPTS
CLRSCR 07
SETPOS 22 46
TEXTOUT 4F "PRESS ENTER
SETPOS 23 35
TEXTOUT 4F "PRINTING CMR AND EXCEPTION REPORTS
SETPOS 40 1
CD\BCIS\ADA
PRINT REPORT XREPORT
CD\BCIS
GOTO REPORTS

41

mn

rem - The LABELS procedure creates the menu for printing bar code labels. The user is
rem - prompted to enter the number in front of the wanted function
rem-

":LABELS
CLRSCR 07
CLRSCR 4F 120 7 60 rem creates a red box
SETPOS 1 20 rem sets postion of cursor
DRAWBOX 40 41 7 2 rem puts outline around box
SETPOS 4 26
TEXTOUT 4F "PRINT BAR CODE LABEL OPTIONS"
CLRSCR 3F I1 15 23 64 rem creates a cyan box
SETPOS 14 27
TEXTOUT 3F "1. Print Batch Labels"
SETPOS 17 27
TEXTOUT 3F "2. Print Individual Labels"
SETPOS 20 27
TEXTOUT 3F "3. Exit to Main Menu"
SETPOS 23 40
TEXTOUT 3F "ENTER (1..3)"

rem-
rem - Procedure LABELGET uses the program BATCHKEY.COM (must be in same dir) to get
rem - the users selection and assigns the users selection to an errorlevel which is used to branch
rem - to the desired procedure
rem-

".LABELGET
BATCHKEY "123"
IF ERRORLEVEL 3 GOTO DRAWMAIN rem if user enters 4 goto main menu
IF ERRORLEVEL 2 GOTO INDIV rem if user enters 2 goto INDIV procedure
IF ERRORLEVEL 1 GOTO BATCH rem if user enters I goto BATCH procedure
GOTO LABELGET rem if wrong value entered waits for another try

rem- -i-------

rem - The procedure BATCH initializes COM2 for communication with the bar code printer. The
rem - procedure moves to the directory where PRNBATCH is located and executed the
rem - program. The user is then returned to thelabels menu.
rem - ------- -

BATCH
MODE COM2: BAUD=96 PARITY=E DATA=7 STOP=-1 >NUL
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "PRINTING BAR CODE LABELS

42

SETPOS 40 1
CD\BCIS\ADA
CALL PRNBATC
CD\BCIS
GOTO LABELS

rein - The procedure INDIV initializes COM2 for communication with the bar code priner. The
rem - procedure moves to the directoru where PRNINDI located and executes the program.
The
remi- user can then print as many bar code labels as he needs. The user is lhen retur to the
rem - labels menu.

INDIV
MODE COM2: BAUD--% PARITY=E DATA=7 STOP1I >NUL
CD\BCIS\ADA
CALL PRN_INDI
CD\BCIS
GOTO LABELS

rem---
rem -The end procedure exits the user from the batch fide and clears the screen. This is the end
rem - of the program
rem--- --------------

:END
CLRSCR 07
SETPOS 1 0
C:\

43

- TrTLE : CMR LISTING package definition specifications
- NAME Richard Hancock
- DATE :28 July 1993
- DESCRIPTION This package contains all operation associated with the object CMRL,

which stands for CMR Listing. This object: is an ASCII file contaiming a
listing of all assets a responsible officer is accountable for. The fonnat of
the CMR is fixed. This pwka contains operations that will OPEN,
CLOSE, and RESET the file. It also contains opmrtios that will search
the CMR and pull out all the serial numbers or search the CMR and get
each line. A Detailed description of each of the operations is provided in
the package body.

with SERIALNUMBERS; use SERIAL_NUMBERS;

package CMRL is

procedure OPEN (NAME in STRING);
procedure RESET (NAME : in STRING);
procedure CLOSE (NAME: in STRING);

procedure GETSN (SN : out SERIALNUMBER);
procedure GETLINE (LINE : out STRING; LAST: out NATURAL);

function ENDOF_FILE return BOOLEAN;

OPENERROR : exception;
RESETERROR: exception;
CLOSEERROR : exception;

end CMRL;

44

-- TITLE : CMR LISTING package definition body
- NAME : Richard Hancock
-DATE : 28 July 1993
- DESCRIPTION : This package contains all operations associated with the object CMRL,
-- : which stands for CMR Listing. This object is an ASCII file containing a

: listing of all assets a responsible officer is accountable for. The format of
: the CMR is fixed. This package contains operations that will OPEN,
: CLOSE, and RESET the file. It also contains operations that will search

-- : the CMR and pull out all theserial numbers or search the CMR and get
: each line. A Detailed description of each of the operations is provided in
: the package body.

with TEXTIO; use TEXTIO;

package body CMRL is

CMRLFILE : FILE-TYPE;
MORESERIALNUMBERS : BOOLEAN := false;
LASTLINEHADSERNRS : BOOLEAN := false;
SNCOUNT : INTEGER;
END_OF_FILE : BOOLEAN := false;

-- - - --- -PROCEDURE OPEN -------- -
-- This procedure opens the CMRL file. The name of the file to be opened is passed to this
-- procedure from the calling procedure. This procedure sets the default input to be the CMRL
-- file.

procedure OPEN (NAME : in STRING) is

begin
TEXT_IO.OPEN (CMRLILE, INFILE, NAME);
TEXTIO.SETINPUT (CMRLFILE);

exception

when others =>
raise OPENERROR;

end OPEN;

45

•-----------PROCEDURE RESET
- This procedure assumes the same file name is passed as when the CMRL file was opened. It
-- resets the file so that reading from its elements can be restarted from the beginning (i.e., resets
-- the pointer to the beginning of the file). Sets the file as the curent input file and resets the
-- End-of-File Flag.

procedure RESET (NAME : in STRING) is

begin
TEXTIO.RESET (CMRLFILE, INFILE);
TEXT_IO.SET_INPUT (CMRLFILE);
ENDOFFILE .- false;

exception
when others =>

raise RESET_ERROR;

end RESET;

--------------- PROCEDURE CLOSE --.---------------------------
- This procedure closes the CMRL file and the default input is set to standard (i.e., keyboard).

procedure CLOSE (NAME: in STRING) is

begin
CLOSE (CMRL FILE);
TEXT IO.SETINPUT (TEXTIO.STANDARDINPUT);

exception
when others =>

raise CLOSE_ERROR;

end CLOSE;

46

------ PROCEDURE GETSN-
- This procedure reads in the iirst 18 characters of each line of the CMRL file. If the line has a
-- serial number, it reads the serial number into a 22 character field and converts the type string
-- to type serial number (private type) without changing the value. This serial number type is
-- passed back to the calling procedure. This procedure continues to read in and process serial
- numbers until the end of line. Then it skips to the next line and continues to search for serial
- numbers until the end of file.

procedure GETSN (SN out SERIALNUMBER) is

SERNR STRING (1..22);
HEADER :STRING (L..18);
JUNKCHAR CHARACTER;

COLUMN TEXT_lO.count;
LINE TEXT-lO.count;

begin

if not MORE SERIALNUMBERS then -- have a new line
SNCOUNT:= 0; -- set serial number count to 0.
loop

TEXT_IO.get (CMRLFILE, HEADER); - get first 18 chars in line
exit when HEADER = " SER NRS:";
exit when LASTLINEHADSERNRS AND HEADER "

LAST_LINEHADSERNRS:= false; -- if line just read in had no serial
TEXTIO.skipjline (CMRL_FILE); numbers then reset flag

end loop;
LASTLINE_HADSERNRS := true; -- now have a line with serial #'s

end if; -- so next time around this state
-- will be true.

if SN-COUNI> I then
get (CMRLIILL, JUNK_CHAR); - special case where serial #Is in

end if; -columns 3-5 have 23 vice 22 chars
for CHAR in 1..22 loop -- read the sn in to a 22 char field

get (CMRLFILE, SERNR(CHAR));
end loop;
SNCOUNT:= SNCOUNT + I; -- increment our count
if not TEXTIO.ENDOFLINE then - if we haven't reached the end of

MORESERIALNUMBERS:= TRUE; -- the line then we have more sn's
else - other wise we don't.

MORESERIALNUMBERS:= FALSE;
skip-line (CMRL_FILE);

end if;
SERIALNUMBERS.CREATE (SERNR, SN); -- create a sn record(private type)

47

exception
when TEXT_IO.ENDERROR =>

ENDOF_FILE - true;
when CONSTRAINTERROR =>

TEXT_lO.PUT_LINE (STANDARD-OUTPUT, "-CONSTRAINT_ERROR raised
reading in from CMRL -- ");

when others =>
TEXTIO.PUTLINE (STANDARD-OUTPUT, "-CONSTRAINTERROR raised

reading in from CMRL -");
end GETUSN;

-PROCEDURE GETLINE
-- This procedure reads a full line from the CMRL into a 150 char string and returns the string
- and the position of the last char in the line.

procedure GETLINE (LINE: out STRING: LAST: out NATURAL) is

begin
TEXTIO.GETLINE (CMRLJILE, LINE, LAST); -- get the full line

exception
when TEXT-IO.ENDERROR =>

END&OF_FILE:= true;
when CONSTRAINTERROR =>

TEXT_IO.PUTLINE (STANDARDOUTPUT, "- CONSTRAINTERROR
raised reading in from CMRL -");

when others ->
TEXT_IO.PULLINE (STANDARDOUTPUT, "-CONSTRAINT ERROR raised

reading in from CMRL -");

end GETLINE;

--- FUNCTION EDFFL

-- This function returns the value of the End-of-File flag. The flag is initially set to false but is
- changed to true when an END_OF_FILE exception is raised in either the GETSN or
-- GET_LINE procedures.

function ENDOF_FILE return BOOLEAN is

begin
return ENDOFFILE;

end ENDOFFILE;

end CMRL;

48

- TITLE CMR REPORT
-- NAME Richard M. Hancock
-DATE :08 Aug 1993
- DESCRIPTION This procedure is the main driver for the Report portion of the Bar Code
-- • Inventory System. This Part of the system opens the found fide which as
-- •was uploaded to the computer upon completion of the inventory. This

procedure formats the serial numbers (appends blanks to the front of each
serial number to return them to 22 character fields). The serial numbers
are flaged as found (ie a space and an F is appended to the serial number

-- to identify which serial numbers were found during the inventory). The
serial numbers are then sorted, ie returned to their original order when

-- :extracted from the CMRL. The CMRL is then opened and each line is
-- •copied to a File called REPORT. When a line is extracted from the
-- :CMRL it is searched for serial numbers, if serial numbers are found they
-- •are replaced with the serial numbers that have been flaged, thus
-- •producing a final report in CMR format of which serial numbers were
-- •found during the inventory. The system was designed using the object
-- • oriented approach and each package is an object that was identifed during
-- the design phase. All operations concerining a particular object will be
-- •found in that Package. The Packages used in this portion of the system
-- are CMRL, READERINPUT, READEROUTPUT,
-- SERIAL_NUMBERS, SNARRAY, FILEPROCESSOR and REPORT

with CMRL; with READERINPUT; with READER-OUTPUT; with REPORT:
with SERIALNUMBERS; use SERIALNUMBERS;
with SNARRAY; use SNARRAY;
with FILEPROCESSOR; use FILEPROCESSOR;
with TEXTIO; use TEXTIO;

procedure CMRRPT is

CMRL,_FILE_.NAME : STRING (L..4) "CMRL";
REPORTFILENAME : STRING (I..6) "REPORT";
READERINPUTFILENAME STRING (L.6):= "READIN";

READEROUTPUT_FILENAME STRING (L..5) := "FOUND";

SN : SERIALNUMBER;
SN COUNT :INTEGER:= 0;
ARR_PTR ARRAYPOINTER;

begin
CMRL.OPEN (CMRLFILE_NAME);
READER INPUT.CREATE (READER INPUT_FILENAME);

49

loop
CMRL.GET-.SN (SN);
exit when CMXL.ENDOFFILE;
SN_COUNT:= SNCOUNT +1;
READERINPUT.ADD_ýSN (SN);

end loop;
CMIRL.RESET (CMRL-FILENAM1E);
READER-JNPUT.CLOSEOUTPUT (READER-JNPUT FILE.NAME);
SNARRAY.CREATE..ARRAY (SN-COUNT, AR&PTR);
FORMATSERNRFILE (SN..COUNT, READEk-INPUTFILENAMIE, ARRYTR);
FORMATCMR_-REPORTFILE (SN-COUNT, READEROUTPUT_-FILENAME,

REPORTFLE-NAME, ARRPIh);
CMRL.CLOSE (CMRL-FILENAME);

exception

wlben CMRL.OPENERROR =>
TEXT-JO.PUT-LINE (STANDARD-OUTPUT, "Error OPENING file CMRL");

when CMRL.RESETERROR =>
TEXTIO.PUTLLINE (STANDARDOUTPUT, "Error RESETIIlNG fMe CMXL");

when CMRL.CLOSEERROR =>
TEXT.JO.PUTLINE (STANDARD-OUTPUT, "Error CLOSING fMe CMXL");

when READER.INPUT.CREATE-ERROR =>
TEXTIO.PUTLINE (STANDARD-OUTPUT, "Error CREATING fMe READIN");

when READERINPUT.OPENERROR =>
TEXTIOPUT_-LINE (STANDARDOUTPUT, "Error OPENING fMe READIN");

when READER-INPUT.CLOSE-ERROR =>
TEXTJlO.PUTLINE (STANDARDOUTPUT, "Error CLOSING file READIN");

when READEROUT.'PUT.OPEN-ERROR =>
TEXTTOPUTLINE (STANDARDOUTPUT, "Error OPENING fie FOUND.DAl");

when READEROUTPUT.CLOSEERROR =>
TEXTIO.PUTLINE (STANDARD-OUTPUT, "Error CLOSING file FOUND.DAT");

when REPORT.CREATE-ERROR =>
TEXTIO.PUTJINE (STANDARD-OUTPUT, "Error CREATING file REPORT");

when REPORT.CLOSEERROR =>
TEXT-lO.PUTLINE (STANDARDOUTPUT, "Error CLOSING Mie REPORT');

end CMR_RPT;

50

-TITLE Download
- NAME :Richard M. Hancock
- DATE :05 Aug 1993
- DESCRIPTION : This procedure is the main driver the for download portion of the Bar
-- : Code Inventory System. This part of the system opens the CMRL fide

: (ASCII file) provided by the user and extracts all the serial numbers into
-- : a Readin file. These serial numbers are then formatted (any blanks at the

: front of the serial numbers are removed) and the fie is sorted into
-- : alpha-numeric ascending order prior to download to the bar code reader.
-- : This portion of the system is necessary before the actual inventory is

: conducted. The system was designed using the object oriented approach
-- : and each package is an object that was identified during the design phase.
-- : All operations concerning any object may be found in that Package. The

: Packages used with this portion of the system are CMRL,
-- : READERINPUT, SERIALNUMBERS, SNARRAY, and
-- : FILEPROCESSOR.

with CMRL; with READER INPUT;
with SERIAL-NUMBERS; use SERIALNUMBERS;
with SNARRAY; use SNARRAY;
with FILEPROCESSOR; use FILEPROCESSOR;
with TEXTIO; use TEXTJO:

procedure DOWNLOAD is

CMRL_FILE_NAME STRING (L..4) "CMRL";
READERINPUT_FILENAME STRING (1..6) "READIN";

SN SERIALNUMBER;
SNCOUNT INTEGER:- 0;
ARRPTR ARRAYPOINTER;

begin
CMRL.OPEN (CMRLY_FILE_NAME);
READER_INPUT.CREATE (READERINPUT_FILENAME);
loop

CMRL.GETSN (SN);
exit when CMRI,.ENDOFFILE;
SNCOUNT := SNCOUNT + 1:
READERINPUT.ADDSN (SN);

end loop;
CMRL.CI,OSE(CMRL_FIlE NAME);
READERINPUT.CLOSEOUTPUT (READERINPUTFILENAME);
SN. ARRAY.CREATE_ARRAY (SNCOUNT, ARRPTR);

51

FORMATSERNRFILE (SN-COUNT, READERINPUT_FILENAME, ARR-PTX);

exception
when CMRL.OPENERROR =>

TEXTIO.PUTLINE (STANDARDOUTPUT, "Error OPENING file CMRL");
when CMRL.CLOSEERROR =>

TEXTJO.PUTLINE (STANDARDOUTPUT, "Error CLOSING fie CMIRL");

when READERINPUT.CREATEERROR =>
TEXT_lO.PUTLINE (STANDARDOUTPUT, -Error CREATING fie READIN");

when READERINPUT.OPENERROR =>
TEXTlO.PUTLINE (STANDARDOTPT "ErrOENNde READIN");

when READERINPUT.CLOSEERROR =>
TEXTý_lOPUTj_LINE (STANDARD-OUTPUT, "Error CLOSING fie READIN");

end DOWNLOAD;

52

-- TITLE Exception Report
- NAME Richard M. Hancock
-DATE : 1 Aug 1993
-- DESCRIPTION : This procedure is the main driver the for uploading the NoFind file from
-- : the bar code reader. This procedure creates an Exception Report file and

: and opens the NoFind file. Formats the report by giving the report a title
: and column headings. The procedure then gets the serial number,
: description and location of the asset not on the CMR and puts it in the
: report, under the appropriate heading. This is continued until the end of

-- : fde flag is raised for the NoFind fMe. The Packages used with this portion
: of the system are CMRL, READER_INPUT, SERIAL_NUMBERS,

-- : SN_ARRAY, and FILEPROCESSOR.

with READEROUTPUT; with REPORT;
with FILEPROCESSOR; use FILEPROCESSOR;
with TEXTJO; use TEXT 10;

procedure X_REPORT is

REPORT_FILE FILETYPE;
REPORTFILENAME STRING (0..7) ."XREPORT";
READER.OUTPUTFILENAME : STRING (1..6) := "NOFIND";

begin
CREATE (REPORTFILE, OUTFILE, REPORT_FILENAME);
SETOUTPUT (REPORTFILE);
FORMATEXCEPTION_-ILE (READERJOUTPUT_FILENAME, REPORTFILE);
CLOSE (REPORTIlE);

exception

when READEROUTPUT.OPENERROR =>
TEXT_IO.PUTLINE (STANDARD OUTPUT, "Error OPENING file NOFIND");

when READEROUTPUT.CLOSEERROR =>
TEXT_IO.PUTLINE (STANDARDOUTPUT, "Error CLOSING file NOFIND");

end XREPORT;

53

-iTILE : FILE PROCESSOR definition package specifications
- NAME : Richard Hancock
-- DATE : 17 July 1993
- DESCRIPTION : This package contains all operations associated with the object FILE

: PROCESSOR. The operations are necessary to format the files that will
-- : be passed between different hardware platforms. The Package performs

: operations on fdles such as removing any blank spaces from serial
: numbers before they are passed to the bar code reader and after the

-- : inventory is completed the serial numbers that found are flaged and
-- : returned to their origninal length of 22 characters. A detailed description
-- : of each of the operations is provided in the package body.

with SNARRAY; use SNARRAY;
with TEXT 10; use TEXT_10;

package FILEPROCESSOR is

REPORTFILE: FILE-TYPE;

procedure FORMAT_SERNRFILE (SNCOUNT : in INTEGER;
SERNR_FILE : in STRING;
ARR__PTR : in ARRAYPOINTER);

procedure FORMATCMRREPORTFILE (SNCOUNT : in INTEGER;
SOURCE_FILE: in STRING;
DEST_FILE in STRING;
ARRPTR in ARRAYPOINTER);

procedure FORMAT_EXCEPTIONFILE (SOURCE_FILE: in STRING;
REPORTFILE in FILETYPE);

procedure FORMAT_LABELS_FILE (SN_ COUNT in INTEGER;
LABELFILE in STRING;
PRINT_FILE in STRING;
ARR_PTR in ARRAYPOINTER);

end FILEPROCESSOR;

54

-TITLE : FILE PROCESSOR definition package body
- NAME : Richard Hancock
- DATE :17 July 1993
- DESCRIPTION : This package contains all operations associated with the object FILE
- : PROCESSOR. The operations are necessary to format the files that will
- : be passed between different hardware platforms. The Package performs
- : operations on f'des such as removing any blank spaces from serial
- : numbers before they wre passed to the bar code reader and after the
- : inventory is completed the serial numbers thai found are flagged and
- : returned to their original length of 22 characters. A detailed description
-- : of each of the operations is provided in the package body.

with SERIAL_NUMBERS; use SERIALNUMBERS;
with TEXTJO; use TEXTIO;
with READER_INPUT; with READEROUTPUT;
with REPORT; with CMRL. with LABELS:

package body FILEPROCESSOR is

---------------PROCEDURE FORMATSERNR_FILE-
-- This procedure opens the file READIN, which contains the serial numbers extracted from
- the CMR and formats this file for the bar code reader. The serial numbers in the file are 22
-- characters long, this procedure reads each serial number into an array and removes any blank
-- spaces in front of the serial number. The array is sorted in alpha-numeric order and then read
-- back to the original fide called READIN. This fide is then going to be downloaded to the bar
- code reader.

procedure FORMAT SERNR_FILE (SNCOUNT : in INTEGER;
SERNR_FILE in STRING;
ARR_PTR in ARRAYPOINTER) is

VALUE STRING (I..22);
INDEX : INTEGER - 0;
SN : SERIAL_NUMBER;

begin
READERINPUT.OPENINPUT (SERNRYFILE); -- open sn file
for I in L..SNCOUNT loop -for the number

READERINPUT.GETSN (SN); -of serial hums
SN-ARRAY.INSERTSN (I,SN,ARRPTR); - get one and place

end loop; - it in the sn array
READERJNPUT.CLOSE_INPUT (SERNR.FILE); -close the file to input

READERINPUT.OPEN. OUTPUT (SERNR .FILE); -- reopen it for output

55

SNARRAY.SORTBYVALUE (SNOUNTARRTR); -- sort sn's

for I in I-.SN-COUNT loop
VALUE - SERIALNUMBERS.VALUE (SNARRAY.REMOVE_SN(IARR_PTR));

for J in L..22 loop
if VALUE(J..J)/= "then - for each san in the

INDEX-J; - array, get its value
exit; - remove any blanks

end if; - and output it to the
end loop; -- bar code reader input fie

READERINPUT.ADDSN (VALUE (INDEX..22));
end loop;
READERINPUT.ADDSN (*"); - tell reader EOF
READERINPUT.CLOSEOUTPUT (SERNR FILE); - close the file

end FORMATSERNRFILE;

-- PROCEDURE FORMATCMRREPORTYFILE.
- This procedure opens the file FOUND, which contains the serial numbers found during the
- inventory that were on the CMR. The serial numbers are read from the FOUND file and the
-- array is searched for a match. The serial numbers in the array are the serial numbers
- extracted from the CMR and were placed in the array when procedure
- FORMATSERNRFILE was called. When the serial number in the array is matched with a
-- serial number in the found file the serial number in the army is flagged as found. The serial
- number is appended with a blank and an 'F. The serial numbers in the array are then sorted
- back to their original CMR position. A file called REPORT is created and the CMR file is
- opened. Each line of the CMR is copied to the REPORT file. If a line in the CMR contains
- any serial numbers the serial numbers in the amy are written to the report file instead of the
- serial numbers in the CMR. This creates a report that is the same format as the CMR except
- the serial numbers that were found during the inventory are flagged as found.

procedure FORMATCMRREPORT_FILE (SNCOUNT : in INTEGER;
SOURCE_FILE: in STRING;
DESTFILE in STRING;
ARRPTR in ARRAYPOINTER) is

INDEX : INTEGER - 0;
SN : SERIALNUMBER;
SNSTR : STRING (1..22);
INLINE : STRING (L.150);
LAST NATURAL;

56

begin
READEROUTPUT.OPEN (SOURCE_FILE); -- open the bar code reader
REPORT.CREATE (DESTFILE); - output file, create the
loop - cmrl report file

SNSTR :"

READEROUTPUT.GETSN (SNSTR); - for every sn in the
exit when READEROUTPUT.ENDOF_FILE; - file, get it and mark
SNARRAY.MARKSNFOUND (SN-STR,ARRPTR); - it found

end loop;
SNARRAY.SORTBYKEY (SN_COUNT, ARRPTR); - sort the array of sn's

- back to original order
INDEX := 1;
loop - get each line in the original

CMRL.GETLINE (INLINE, LAST); -- cmrl
exit when CMRL.ENDOFI_FILE;
ifINLINE (L..18)/= - "then

while IN_LINE (1.. 18)/=" SER NRS:" loop
REPORT.ADD_LINE (INLINE (1..LAST)): - if the line doesn't
CMRL.GETLINE (IN-LINE, LAST); - have any sn's then get

end loop; -- the next line until EOF
end if;
SN := SNARRAY.REMOVESN (INDEX, ARR_PTR);

- want to take the line input from the original cmrl and reinsert serial numbers from
-- the array and then output the reconstructed line to the cnrl report file

IN-LINE (19..40) :-- SERIALNUMBERS.VALUE (SN); -- insert 1st sn
if LAST >= 62 then -- insert 2nd sn

INDEX := INDEX + 1;
IN_,INE(41..62):=

SERIALNUMBERS.VALUE(SNARRAY.REMOVESN(INDEX,
ARRPTR));

end if:
if LAST >= 85 then -- insert 3rd sn
INDEX:= INDEX + 1;

INLINE(64.. 85):=SERIAL_NUMBERS.VALUIE(SNARRAY.REMOVESN(INDEX,
ARRPTR));

end if;
if LAST >= 108 then - insert 4th sn

INDEX := INDEX + 1;
INLINE(87.. 108):=SERIALNUMBERS.VALUE(SNARRAY.REMOVESN

(INDEX, ARR-PTR));
end if;
if LAST = 131 then -- insert 5th sn

INDEX := INDEX + 1;

57

INLINE(lI1O..131):= SERIAL_NUMBERS.VALUTE(SNARRAY.REMOVESN
(INDEX, A.RRYPTR));

end if,
INDEX: INDEX + 1; - add reconstructed line.

REPORT.ADD-LINE (fl'ULINE(l..LAST)); to the cmrl report
end loop;
READEROUTPUT.CLOSE (SOURCEFILE); close the files

REPORT.CLOSE (DESTLFILE);

end FORMATCMRREPORTFILE;

-- ----- ----- PROCEDURE FORMAT_-EXCE PTIN-IONFLE------
-This procedure fonnats the serial numbers that were not on the CMR but were found during
-- the inventory into an exception report. During the inventory the user is notified when an asset
-- is not on the CMR. He is instructed to enter a description of the asset and its location. This
-imformation will be recorded in the exception report.

procedure FORMATEXCEPTIONYIELE (SOURCEFILE in STRING;
REPORT-FILE in FILETYPE) is

SN_5Th STRING (I.-22);
ASSETDESCRIPTION STRING (I..30);
ASSET_-LOCATION STRING (L..18);
LASf :NATURAL;

begin
REPORT.FORMATEXCEPTION_-REPORT;
READEROTJTPUT.OPEN (SOURCEFILE);

*loop
exit when READER.OUTPUT.ENDOFFILE1;
SN_5Th :- ""
ASSET-DESCRIPTON :~

ASSETLOCATION :="
READEROUTIPUT.GETSN (5N.-STR);
TEXTIO1.SET_-COL(REPORTFILE, 1);
TEXT_-IO.PUT(S&-STR);
READER_.OUTPUT.GET_-DESCRIPTION(ASSET DESCRIPTION);
TEXTIO.SETCOL(REPORTYFILE, 28);
TEXT_-IO.PUT(ASSETDESCRIPTION);
READEROUTPUTT.GFTL.OCATION(ASSET -LOCATION);
TEXTIO.SETCOL(. RTFILE, 62);
TEXT_-IO.PUT_LINE(ASSETLOCATION);

end loop;
REA.DEROUTPLJT.CLOSE (SOURCEFILE);

end FORMATEXCEPTIONFILE;

"58

------- --------- PROCEDURE FORMATLABELSFILE --------------
This procedure opens the file LABELS, which contains the serial numbers extracted from the
-- CMR and formats this file for printing bar code labels. The serial numbers in the file are 22
-- characters long, this procedure reads each serial number into an array and removes any blank
-- spaces in front of the serial number. The array is sorted in alpha-numeric order and then the
-- serial numbers are appended with the necessary control characters for communication with the
- bar code printer. The serial numbers with the control characters are then written to COM2 port
- for printing.

procedure FORMATLABELSFILE (SNCOUNT in INTEGER;
LABELFILE in STRING;
PRINTFILE in STRING;
ARRPTR in ARRAY POINTER) is

VALUE : STRING (1..22);
INDEX INTEGER:= 0;
LENGT1I :INTEGER :=0;
SN SERIALNUMBER:

begin
LABELS.OPENINPUT (LABELFILE); -- open sn file
for I in L..SN_COUNT loop -- for the number

LABELS.GETSN (SN): -- of serial nums
SN ARRAY.INSERTSN (I,SN,ARR..PTR): -- get one and place

end loop; -- it in the sn array
LABELS.CLOSEINPUT (LABELYFILE); -- close the frde to input
LABELS.CREATE (PRJNTFILE); -- open com2 for output
SNARRAY.SORTBYVALUE (SNCOUNT,ARRPTR); -- sort sn's
for I in I..SNICOUNT loop

VALUE:= SERIALNUMBERS.VALUE (SNARRAY.REMOVESN(I.ARR PTR)):
for J in 1 ..22 loop

if VALUE(J..J) /= then -- for each sn in the

INDEX := J; - array, get its value
LENGTH := 23 - INDEX; - get length of each sn
exit; - remove any blanks

end if; -- and output it to the
end loop: - com2 port

LABELS.PRINTLABEL (VALUE (INDEX..22), LENGTH),
end loop;
LABELS.CLOSEOUTPUT (PRINTFILE); -- close com2 port

end FORMATLABELSFILE;

end FILEPROCESSOR;

59

INV3ITCRY PORTION OF SYSTUM

: This program is designed to be used by Marine Corps Systems
: command in conducting inventory of its serialized assets. This
: portion of the system is written using IRL and will reside in
: the bar code reader. This program has two major functions:
: conducting the inventory and transmitting the results back to a
: computer. During the inventory portion, the user is prompted to
: enter a serial number or F3 to transmit. The user should
: continue to enter serial numbers until the inventory is
: complete. The inventory takes a serial number , and performs a
: search of the serial number file (FILE A). This file contains
: all the serial numbers found on the CMR Listing. If the serial
: number scanned is is on the CMR (in FILE A), the program jumps
: to a procedure called CHKDUP. This procedure then checks the
: found file to see if the asset just scanned has already been
: inventoried. If the asset has not already been inventoried the
: program jumps to the FOUND procedure, where the serial number
: is recorded in the found file (FILE B). If the asset has
: already been inventoried the program jumps back to the INV
: procedure and the user is asked to enter another serial number.
: If the serial number scanned does not match any of the serial
: numbers in FILE A, the user receives a warning beep and is
: instructed to enter the description and location of the asset.
: This data is then recorded in the not found file (FILE C). When
: the user selects transmit data he is promted whether he wants
: to transmit the found file or the not found file. The reader
: then assigns the name the file will be transmitted to on
: the computer using IRL commands specially created to interact
: with intrscan software. The files are then uploaded to the
: computer.

SPECIFICATION DEFINITION SECTION

OA(4000,23) : Open file A for 4000 records, 23 char per
: record. File will contain serial #'s
: downloaded from CMR.

OB(4000,23) : Open file B for 4000 records, 23 char per
: record. File will contain the serial# of
: assets scanned that matched the CMR.

OC(100,128) : Open file C for 100 records, 128 char per
: record. File contains the serial #,
: description, and location of assets that
: were not on the CMR.

P" MARCORSYSCOM* : Displayed on screen when program is
P0 INVENTORY" : initiated.
W3 : Wait 3 seconds

60

:INVORY PORTION OF PROGMM

* *** **** * *** *** *** ***h**

The INV routine commences the actual inventory portion of the
program. It prompts the user to enter a serial # or F3 to
transmit files after the inventory is completed.

.INV : INV routine
D$0=0" : Clear input register 0
Pn\e[2JN : Clear screen on reader
POENTER SERIAL # ORO
POF3 TO TRANSMITm
P"\r" : Carriage return
A : Get ASCII input
G$O=OF3".XMIT : Goto XMIT routine if F3 is entered

SEARCH is a routine designed to perform a search of File A
to see if the serial # of the asset inventoried is on the CMR.
The routine calls two other routines (CHKDUP and NOFIND).

.SEARCH : SEARCH ROUTINE
H#9=A : Puts the location number of the last

: record in File A into register #9.
LA$0#8 : Searches file A for a serial number that

; matches the serial number is string
: register $0. It then places the location
: of the match in register #8. If there is
: not a match it places the location number
: of the last serial number in the file
: plus one into register #8.

G#8<=#9.CHKDUP : Goto CHKDUP routine if the location
: number in register 8 is less than or
: equal to the location # in register 9.

G#8>#9.NOFIND : Goto routine NOTFOUND if the location
: number found in register 8 is greater
: than the number of records in the file.

61

: The CHKDUP routine is called frQm the SEARCH routine. This
: routine searches the found file to make sure the asset just
: scanned hasn't already been inventoried. If the asset has not
: already been inventoried the program jumps to the FOUND
: routine. If the asset has already been inventoried the program
: returns to the INI routine.
* *** ***********

.CHKDUP : CHKDUP ROUTINE
H#7=B : Puts the location number of the last

: record in File B into register #7.
LB$0#6 : Searches file B for a serial number that

: matches the serial number is string
: register $0. It then places the location
: of the match in register #6. If there is
: not a match it places the location number
: of the last serial number in the file
: plus one into register #6.

G#6<=#7.INV : Goto INV routine if the location number
: in register 6 is less than or equal to
: the location # in register 7. (If the
: asset has already been inventoried).

G#6>#7.FOUND : Goto routine FOUND i- he location
: number found in register 6 is greater
: than the number of records in the file.
: The asset has not already been
: inventoried.

** *******

: FOUND routine is called from .chkdup and is initiated when
: the serial # scanned is found in FILE A. This routine saves the
: serial number in the found file (FILE B) and returns to the INV
: routine.
** *************

.FOUND : FOUND ROUTINE
RB : Puts the serial number scanned into file

: B which is the matched file and clears
: string register 0.

G.INV : Goto INV routine, this forms a loop
: taking you back to the beginning of
: the program an asks for another serial
: number

62

The NOFIND routine is called from the SEARCH routine. It is
initiated when the entire file A has been searched and none of
the serial numbers matched. This routine querries the user
to enter a description of the item and the location and
stores the information in file C.

* *********************** ***

.NOFIND : NOFIND ROUTINE
BIll111 : bar code reader will beep to warn user
P"\e[2J" : Clears the screen on the reader

P"ITEM NOT ON CMR" : Prompt user
W3 : Wait 3 sec before going to next

: command
P"\e[2J" : Clears screen on reader
RC : Transfers the serial number to the Not

: Found file (file C) and clear the
: register

P1"ENTER DESCRIPTION": Prompt user
P"OF THE ASSET "
P"1\r" : Carriage return
K : Get input from the keypad
RC : Transfers the description to the Not

: Found file (file C) and clear i •e
: register

P"\e[2J" : Clears screen on reader
P"ENTER LOCATION" : Prompt user
P"OF THE ASSET
P"\r" : Carriage return
K : Get input from the keypad
RC : Transfers location to Not found file

: (file C) and clears the register
G.INV : Goto INV routine

: TRANSMIT PORTION OF PROGRAM

- ***

The XMIT routine prompts the user to choose which file to
transmit: the found file (FILE B) or the not found file
(FILE C). Depending on the users input, this routine calls
either XFIND or XNOFIND routines.

63

.XMIT
D$0=*" : Clears input register 0
Pm\e[2J* : Clears screen on reader
P" ENTER TO XKIT" : Prompt user
P*F1- FOUND FILEO
P*F2- NOT FOUND FILE"
P'\r" : Carriage return
A2 : Get ASCII input of 2 chars
G$0='FI".XFIND : Goto XFIND routine if Fl
G$0o=F2".XNOFIND : Goto XNOFIND routine if F2

The XFIND routine is called from XMIT routine. This routine
finds how many records are in the file. If there are no
records in the file the routine calls NO_RECS routine. This
routine also prompts the user that the reader is transmitting.

.XFIND
H#1=B : Puts the number of records in

: FILE B into register 1
G#1=0.NORECS : Goto NORECS routine if FILE B

: doesn't have any records
D#2=0 : Sets register 2 equal to 0 (the

: first record in the file)
P"\e[2J" : Clears screen on reader
PNTRANSMITTING...' : Tells user reader is

: transmitting

: The TRANSFD routine transmits the found file (FILE B), one
: record at a time. The file will be transmitted to the computer
: using intrscan software. The file will be transmitted to a
: file called FOUND.DAT located in the intrscan directory on the
: computer.

64

.TRANSFD
D$0=UM : Clears input register 0
D$O="-DATA_1_FOUND.DAT_" : IRL command for intrsacan to put

: the data appended to this
: statement in a file called
: FOUND.DAT

D$0=$O+B(#2) : #2 is a pointer that is pointing
: to a record in FILE B. That
: record will be appended to the
: statement above.

XMP,$0 : Transmit using protocol the
: contents of register 0.

D#2=#2+1 : Increment the pointer
G#2<#l.TRANFD : Loop until the pointer equals the

: number of records found in FILE B
G.INV : Goto INV routine

************** ************************* ********************** ** *

: The XNOFIND routine is called from XMIT routine. This routine
: finds how many records are in the file. If there are no

records in the file the routine calls NORECS routine. This
routine also prompts the user that the reader is transmitting.

.XNOFIND
H#1=C : Puts the number of records in

: FILE C into register 1
G#1=0.NORECS : Goto NORECS routine if FILE C

: doesn't have any records
D#2=0 : Sets register 2 equal to 0 (the

: first record in the file)
P"\e[2J" : Clears screen on reader
P"TRANSMITTING..." : Tells user reader is

: transmitting

: The TRANSNO routine transmits the not found file (FILE C), one
: record at a time. The file will be transmitted to the computer
: using intrscan software. The file will be transmitted to a
: file called NOFIND.DAT located in the intrscan directory on the
: computer.

65

* TRANSNO
D$0=416clears input register 0

D$O=0-DATA6_1_NOFIND.DAT_": IRL command for intrsacan to put
:the data appended to this
:statement in a file called
:NOFIND. DAT

D$0=$0+C(#2) :#2 is a pointer that is pointing
:to a record in FILE C. That
:record will be appended to the
:statement above.

XKP,$O :Transmit using protocol the
:contents of register 0.

D#2=#2+1 :Increment the pointer
G#2<#l.TRANNO :Loop until the pointer equals the

:number of records found in FILE C
G.INV :Goto INV routine

:NO_RECS is called from either XFIND or XNOFIND routines. This
:routine is an exception handler. If the user tries to transmit
:a file that doesn't have any records, the user will be prompted
:the file is empty and the program will return to the INV
:routine.

.NO_RECS
Bl11l11l Reader will beep a warning
P"\e[2J" Clears screen on reader
P"NO RECORDS IN FILE" : Prompts user
W3 :Waits 3 seconds
G.INV :Goto INV routine
E :End of program

66

--TITLE : LABELS package definition specifications
-- NAME : Richard Hancock
-- DATE : 20 Aug 1993
- DESCRIPTION : This package contains all operations associated with the object Labels.

: Labels are created by extracting serial numbers from the CMR. The
: serial numbers are placed in a file called LABEL. These serial numbers

-- : are formatted the same as the reader input file (ie. all the blanks are
-- : removed and the serial numbers are sorted in alpha numeric order. The
-- : serial numbers are then appended with the necessary control characters
-- : for communication with the bar code printer. This package contains the

: following operations: CREATE, OPEN_INPUT, CLOSEINPUT,
-- : CLOSE_ OUTPUT, ADDSN, PRINT LABEL and GET_SN. A

: detailed description, of each of the operations is provided in the package
-- : body.

with SERIALNUMBERS; use SERIAL_NUMBERS;

package LABELS is

procedure CREATE (NAME: in STRING);

procedure OPEN_INPUT (NAME : in STRING);

procedure CLOSEINPUT (NAME : in STRING);
procedure CLOSEOUTPUT (NAME : in STRING);

procedure ADDSN (SN: in SERIALNUMBER);
procedure ADDSN (SN : in STRING);

procedure PRINTLABEL (SN: in STRING; LENGTH: in INTEGER);

procedure GETSN (SN : out SERIALNUMBER);

function ENDOFFILE return BOOLEAN;

CREATEERROR : exception;
OPENERROR : exception;
CLOSEERROR : exception;

end LABELS;

67

- TITLE :LABELS package definition body
- NAME : Richard Hancock
- DATE :20 Aug. 1993
- DESCRIPTION This package contains all operations associated with the object Labels.

Labels are created by extracting serial numbers from the CMR. The
-- : serial numbers are placed in a file called LABEL. These serial numbers

are formatted the same as the reader input file (ie. all the blanks are
removed and the serial numbers are sorted in alpha numeric order. The
serial numbers are then appended with the necessary control chra.ters

-- : for communication with the bar code printer. This package contains the
following operations: CREATE, OPENJNPUT, CLOSEJNPUT,
CLOSE_ OUTPUT, ADDSN, PRINT LABEL and GETSN. A

-- :detailed description of each of the operations is provided in the package
-- • body.

with TEXT_10; use TEXTIO;

package body LABELS is

INFILE : FILETYPE;
OUTFILE : FILETYPE;
END_OFFILE : BOOLEAN:= false;

------------ PROCEDURE CREATE--
-- This procedure creates a file to store the serial numbers extracted from the CMRL file. Sets
-- the default output to this fide.

procedure CREATE (NAME: in STRING) is

begin
TEXTIO.CREATE (OUTFILE, OUT_FILE, NAME);
TEXTJO.SETOUTPUT (OUTFILE);

exception
when others =>

raise CREATEERROR;

end CREATE;

68

--- PROCEDURE OPENINPUT-
-- This procedure opens the file storing serial numbers for input to format (ie remove blank
- spaces) for printing bar code labels. Sets the default inmput to this fle

procedure OPEN_INPUT (NAMEE: in STRING) is

begin
TEXTJO.OPEN (NFILE, INFILE, NAME);
TEXT_IO.SET_INPUT (INFILE);

exception
when others =>

raise OPENERROR;

end OPENINPUT;

--- PROCEDURE CLOSE_INPUT---
-- This procedure closes the file, setting the default to standard input (ie keyboard)

procedure CLOSEINPUT (NAME: in STRING) is

begin
TEXTJO.CLOSE (INFILE);
TEXTIO.SETINPUT (TEXTIO. STANDARDINPUT);

exception
when others =>

raise CLOSEERROR:

end CLOSEINPUT;

S-.-------.....--------------- PROCEDURE CLOSEOUTPUT---------------
-- This procedure closes the file to output, setting the default to standard output (ie the
-- monitor).

procedure CLOSEOUTPUT (NAME: in STRING) is

begin
TEXTIO.CLOSE (OUTFILE);
TEXT-lO.SETOUTPUT (TEXT'_IO.STANDARDOUTPUT);

exception
when others =>

raise CLOSEERROR;

end CLOSEOUTPUT;

69

- ----- ---- ----------- PROCEDURE ADD-SN ---- ---

-- This procedure receives a serial number of private type serial number and calls the function
- VALUE in package SERIAL NUMBERS which converts the serial number (to type string).
-- This procedure then writes the serial number to the file that is opened for current input.

procedure ADDSN (SN : in SERIALNUMBER) is

begin

TEXTIO.PUTLINE (OUTFILE, SERIALNUMBERS.VALUE(SN));

end ADDSN;

- -PROCEDUREADD_SN
-- This procedure receives a serial number (type string) and writes the serial number to the
- current file open for input

procedure ADDSN (SN : in STRING) is

begin
TEXTIO.PUT_LINE (OUTFILE, SN);

end ADDSN;

---- ------- ------- PROCEDURE PRINT LABEL ----- ----

-- This procedure receives a serial number of type string and appends the necessary control
-- characters for communication with the bar code printer to each serial number. The serial
-- number and control characters are then written to COM2 port for printing.

procedure PRINTLABEL (SN : in STRING; LENGTH : in INTEGER) is

STX: CHARACTER:= ASCII.STX;
ESC: CHARACTER:= ASCII.ESC;
CAN: CHARACTER:= ASCII.CAN;
ETB: CHARACTER:= ASCII.EIB;
ETX: CHARACTER:= ASCII.ETX;
LABEL: STRING(l..LENGTH4 7);

begin
LABEL:=STX&ESC&"E I "&CAN&SN&ETB&ETX;

TEXTIO.PUTLLINE(OUTFILE,LABEL);

end PRINTLABEL;

70

-------------------- PROCEDURE GETSN-----
-- This procedure gets a serial number from the current file open for output. Passes the serial
-- number (type string) to CREATE procedure in package SERIAL NUMBERS which returns a
-- serial number (private type serial number) with the same value. The procedure advances the
-- open file one line and returns the serial number(private type) to the calling procedure.

procedure GETSN (SN : out SERIALNUMBER) is

VALUE: STRING (-..22);
LAST :INTEGER;

begin
TEXT IO.GET (INFIIE,VALUE);
SERIALNUMBERS.CREATE (VALUE, SN);
TEXTJIO.skipline (INFILE);

exception
when TEXT JO.ENDERROR ->

ENDOFFILE := true;

end GETSN;

---------- -- FUNCTION ENDOFFILE ---
-- This function returns the value of the ENDOFFILE flag

function ENDOF FILE return BOOLEAN is

begin
return TEXTIO.ENDOFFILE:

end ENDOFFILE;

end LABELS;

71

- TITLE Print Batch Labels
- NAME Richard M. Hancock
- DATE :20 Aug 1993
-- DESCRIPTION This procedure is the main driver the for the print bar code label protion

of the BCIS. This part of the system opens the CMRL file (ASCII file)
- provided by the user and extracts all the serial numbers into a Label file.
- These seral numbers we then fonmatted (any blanks at the fhotw of the
- serial numbers are removed) and the file is sorted into sha-numeric

ascending order. This program uses the same code as the download
- portion of the system to ensure the serial numbers downloaded to the
: reader match the serial numbers on the labels. This program then
: appends the necessary control characters for communiation with the bar
: code printer to each serial number and sends this info to the bar code
printer via COM port 2. The objects used in this portion ofthe system are

-- CMRL, READER-INPUT, SERIAL_NUMBERS, SNARRAY, and
-- : FILEPROCESSOR.

with CMRL; with LABELS;
with SERIAL_NUMBERS; use SERIALNUMBERS;
with SNARRAY; use SNARRAY;
with FILEPROCESSOR; use FILEPROCESSOR;
with TEXTJIO; use TEXTIO;

procedure PRNBATCH is

CMRLFILENAME STRING (1..4) "CMRL";
LABEL-FILE_NAME STRING (1..6) "LABELS";
OUTPUT_FILENAME constant STRING "COM2";

SN SERIALNUMBER;
SNCOUNT INTEGER:= 0;
ARRPTR ARRAYPOINTER;

begin
CMRL.OPEN (CMRL FILENAME);
LABELS.CREATE (LABELFILENAME);
loop

CMRL.GETSN (SN);
exit when CMRL.ENDOF_FILE;
SNCOUNT .= SNCOUNT + 1;
LABELS.ADDSN (SN);

end loop;

72

CMRL.CLOSE(CMfRLFILENAM[E);
LABELS.CLOSEOUTPUT(LABELFILE-NAMIE);
SNARRAY.CREATEARRAY (SN-COUNT, ARR&PTR);
FORMATLABELSFILE (SN-COUNT, LABELFILENAMEL, OUTPUTHILE-NAME,

ARR-PTR);

exception
when CMRL.OPEN,.ERROR =>

TEXTIOPUTJ.JINE (STANDARDOUTPUT, "Error OPENING tile CMERL");

when CMRL.CLOSEERROR =>

TEXTIO.PUTLINE- (STANDARD_-OUTPUT, "Error CLOSING fie CMRL");

when LABELS.CREATEERROR =>
TEXTIO.PUL-LINE (STANDARDOUTPUT, "Error CREATING fMe LABELS");

when LABELS.OPEN_ýERROR =>
TEXTIO.PUTLINE (STANDARDOUTPUT, "Error OPENING file LABELS");

when LABELS.CLOSEERROR =>
TEXTIO.PUT-LINB (STANDARDOUTPUT, "Error CLOSING rile LABELS");

end PRNBATCH;

73

-TITLE Print Individual Labels
-- NAME Richard M. Hancock
-DATE •22 Aug 1993
- DESCRIPTION This procedure is the main driver the for printing individual bar co&de
-- labels. This program queres the user to enter a serial number. The serial
-- number is then appended with the necesstmy control characters for

•communication with a bar code pinter. The serial number and control
: characte are then sent to the printer via the COM2 port. The object
: used in this portion of the system is LABEL.

with LABELS; with TrY;
with CURSOR; use CURSOR;
with COMMONDISPLAYTYPES; use COMMONDISPLAY§TYPES;
with TEXT-IO; use TEXT_10;

procedure PRN_INDIV is

OUTPUT_FILE_NAME constant STRING := "COM2";
SN : STRING(I..22);
LENGTH :INTEGER .- 0;
NOBLINK: BOOLEAN:= false;
FINISHED: BOOLEAN:= false;
BLANK constant STRING:=" ";
ASK : constant STRING:= " ENTER A SERIAL NUMBER OR 'QUIT' TO EXIT";
BACK : COLOR := blue;
FORE : COLOR := brightwhite;
ESC • CHARACTER:= ASCII.ESC;

begin
while not FINISHED loop

TTY.CLEARSCREEN;
ITY.PUT(1 0,15,BLANK,FORE,BACK,NOBLINK);
1TY.PUT(1 1,15,ASK,FORE,BACK,NOBLINK);
TrY.PUT(12,15,JBLANK,FORE,BACKNOBLINK);
TIY.PUT(I 3,1 5,BLANK,FORE,BACK,NOBLINK);
CURSOR.MOVE(I 3,30);
TEXTIO.GETLINE(SNLENGTH);
if SN(L..LENGTH) = "QUIT" or SN(I..LENGTH) = "Quit"

or SN(I..LENGTH) = "quit" then
FINISHED := true;

else
LABELS.CREATE (OUTPUTFLLE_NAME);
LABELS.PRINTLABEL(SN(I..LENGTH),LENGTH);
FINISHED .= false:

74

LABELS.CLOSEOUTPUT (OUTPUT FILENAME);
end if;

end loop;

exception
when LABELS.CREATE-ERROR =>

TEXTIO.PUT_LINE (STANDARDOUTPUT, "Error CREATING file LABELS");

when LABELS.CLOSEERROR =>
TEXTIO.PUTLINE (STANDARD OUTPUT, "Error CLOSING file LABELS");

end PRNtINDIV;

75

-- TITLE READER INPUT package defintion specifications
- NAME Richard Hancock
-- DATE :28 July 1993
- DESCRIPTION This package contains all operations associated with the object reader
-- : input READER NPUT is a fide that contains only serial numbers that
-- :were extracted from the CMRL. This file will be downloaded to the bar
-- :code reader before an inventory is conducted. The operations contained

in this package are CREATE, OPEN INPUT, OPEN OUTPUT, CLOSE
INPUT, CLOSE OUTPUT, ADD SERIAL NUMBER, GET SERIAL

-- :NUMBER, and END OF FILE. A detailed description of each of these
-- :operations are contained in the Package Body.

with SERIALNUMBERS; use SERIALNUMBERS;

package READERINPUT is

procedure CREATE (NAME : in STRING);

procedure OPENINPUT (NAME: in STRING);
procedure OPENOUTPUT (NAME in STRING);

procedure CLOSEOUTPUT (NAME: in STRING);
procedure CLOSEINPUT (NAME in STRING);

procedure ADD_.SN (SN in SERIAL NUMBFR);
procedure ADD-SN (SN in STRING);

procedure GETSN (SN out SERIAL_NUMBER);

function ENDOFFILE return BOOLEAN;

CREATEERROR exception;
OPENERROR exception;
CLOSEERROR exception;

end READERINPUT;

76

-- TITLE READER INPUT package definition body
-- NAME Richard Hancock
-- DATE 28 July 1993
-- DESCRIPTION This package contains all operations associated with the object reader
-- :input. READER INPUT is a file that contains only serial numbers that

were extracted from the CMRL. This file will be downloaded to the bar
-- :code reader before an inventory is conducted. The operations contained
-- in this package are CREATE, OPEN INPUT, OPEN OUTPUT,
-- :CLOSE INPUT, CLOSE OUTPUT, ADD SERIAL NUMBER, GET
-- : SERIAL NUMBER, and END OF FILE. A detailed description of each
-- :of these operations are contained in the Package Body.

with TEXT 1O; use TEXTIO;

package body READERINPUT is

INFILE FILETYPE;
OUTFILE FILETYPE;
ENDOFFILE BOOLEAN:= false;

---------------------------......--- PROCEDURE CREATE----
-- This procedure creates a file to store the serial numbers extracted from the CMRL file. Sets
-- the default output to this fide

procedure CREATE (NAME : in STRING) is

begin
TEXT _O.CREATE (OUTFILF. OUT FILE, NAME);
TEXTIO.SETOUTPUT (OUTFILE);

exception
when others =>

raise CREATE_ERROR;

end CREATE;

------------------------------------ PROCEDURE OPEN_INPUT-------------------
-- This procedure opens the file storing serial numbers for input to format (ie remove blank
-- spaces) for bar code reader input. Sets the default input to this file

77

procedure OPEN_INPUT (NAME: in STRING) is

begin
TEXT_IO.OPEN (INFILE, INFILE, NAME);
TEXT_IO.SET_INPUT (INFILE);

exception
when others =>

raise OPEN-ERROR;

end OPENINPUT;

------- • ----- PRO CEDURE OPENOUTPUT
- This procedure opens the file storing serial numbers for output to hold formatted serial
- numbers for bar code reader input. Sets default output to this file.

procedure OPENOUTPUT (NAME: in STRING) is

begin
TEXTI_1O.OPEN (OUTFILE, OUTFILE, NAME);
TEXTIO.SETOUTPUT (OUTFILE);

exception
when others =>

raise OPENERROR;

end OPENOUTPUT;

------ PROCEDURE CLOSE_OUTPUT--
- This procedure closes the fide to output, setting the default to standard output (ic the monitor).

procedure CLOSEOUTPUT (NAME: in STRING) is

begin
TEXT_IO.CLOSE (OUTFILE);

TEXT_IO. SET_OUTPUT (TEXTIO. STANDARDOUTPUT);
exception

when others =>
raise CLOSE_ERROR;

end CLOSEOUTPUT;

78

-PROCEDURE CLOSEINPUT-
-- This procedure closes the file, setting the default to standard input (ie keyboard)

procedure CLOSE_INPUT (NAME : in STRING) is

begin
TEXT_IO.CLOSE (INFLE);
TEXT_IO.SETINPUT (TEXTIO.STANDARDINPUT);

exception
when others =>

raise CLOSEERROR;

end CLOSE_INPUT;

---------------- PROCEDUREADDSN------
-- This procedure receives a serial number of private type serial number and calls the function
- VALUE in package SERIAL NUMBERS which converts the serial number (to type string).
-- This procedure then writes the serial number to the file that is opened for current input.

procedure ADD_.SN (SN : in SERIALNUMBER) is

begin
TEXT_IO.PUTLINE (OUTFILE, SERIAL-NUMBERS.VALUE(SN));

end ADDSN;

------------- PROCEDURE ADDSN ------------------------------
-- This procedures receives a serial number (type string) and writes the serial number to the
-- current file open for input.

procedure ADD._SN (SN : in STRING) is

begin
TEXTIO.PUTLINE (OUTFILE, SN);

end ADDSN;

--------- PROCEDURE GET_SN ---
- This procedure gets a serial number from the current file open for output. Passes the serial
-- number (type string) to CREATE procedure in package SERIAL NUMBERS which returns a
-- serial number (private type serial number) with the same value. The procedure advances the
-- open file one line and returns the serial number(private type) to the calling procedure.

79

procedure GET-SN (SN :out SERIAL_-NUMBER) is

VALUE STRING (L..22);
LAST INTEGER;

begin
TEXTlO.GET (INFILEVALUE);
SERIAL.,_NUMBERs.CREATE (VALUE, SN);

TEXT_10. SKIPLINE (INFILE);
exception

when TEXT b.END_ERROR =>
END_OFFILE true;

end GETL-SN;

---------- -FUNCflON ENDOFFILE

- Tbis fimction returns the value of the EN])_OFFILE flag

function ENDOFý_FILE return BOOLEAN is

begin
return TEXT1_TO.END_OFJFIhE;

end ENDOFFILE;

end READERINPUT;

80

- TITLE READER OUTPUT package definition specifications
- NAME Richard Hancock
-- DATE :28 July 1993
-- DESCRIPTION : This package contains all operations associated with the object reader

: output READER OUTPUT is a file that contains only serial numbers
-- : that were uploaded from the barcode reader. These fries will be formated
-- : for processing into reports. The operations contained in this package are

: OPEN, CLOSE, GET SERIAL NUMBER AND END OF FILE. A
-- : detailed description of each of these operations are contained in the
-- Package Body.

package READEROUTPUT is

procedure OPEN (NAME: in STRING);

procedure CLOSE (NAME: in STRING);

procedure GETSN (SN : out STRING);

procedure GETDESCRIPTION (ASSETDESCRIPTION: out STRING);

procedure GETLOCATION (ASSETLOCATION: out STRING);

function ENDOFFILE return BOOLEAN;

OPENERROR : exception;
CLOSEERROR exception;

end READEROUTPUT;

81

-- TITLE READER OUTPUT package definition body
- NAME Richard Hancock
-DATE :28 July 1993
- DESCRIPTION This package contains all operations associated with the objet reader

output. READER OUTPUT is a file that contains serial numbes that
were uploaded from the barcode reader. These files will be formated
for processing into reports. The operations contained in this package are
OPEN, CLOSE, GET SERIAL NUMBER, GET LOCATION, GET

-- DESCRIPTION and END OF FILE. A detailed description of each of
-- these operations are contained in the Package Body.

with TEXTIO; use TEXTIO;

package body READEROUTPUT is

READEROUTFILE TEXTIO.FILETYPE;
ENDOFFILE BOOLEAN := false;

----------- PROCEDURE OPEN --
-- This procedure opens the file generated by the bar code reader and sets the default input to the
-- given file name.

procedure OPEN (NAME: in STRING) is

begin
TEXTIO.OPEN (READEROUTFILE, INFILE, NAME);
TEXTIO.SETINPUT (READEROUTFILE);

exception
when others =>

raise OPENERROR;

end OPEN;

------- PROCEDURE CLOSE-- ------
- This procedure closes the output file produced by the bar code reader and sets the default
-- input to standard input (ie keyboard).

82

procedure CLOSE (NAME: in STRING) is

begin
CLOSE (READEROUTFILE);
TEXTIO.SET_INPUT (TEXT-IO.STANDARD INPUT);

exception
when others =>

raise CLOSEERROR,

end CLOSE;

-PROCEDURE GETSN
- Ibis procedure gets a serial number from the bar code reader output file. This procedure
- counts whow many characters are in the serial number and pads the front of the serial number
-- with blanks to return the serial number to a 22 character field

procedure GETSN (SN out STRING) is

VALUE STRING (I..22);
LAST NATURAL;
BLANKCOUNT :NATURAL;

begin
TEXTIO.GETLINE (READEROUTFILE, VALUE, LAST); -input a sn

BLANKCOUNT:= 22 - LAST; -- and then pad it
for I in L..BLANKCOUNT loop -- with blanks to

SN (I..I) ""; -- get 22 chars.
end loop;

SN (BLANK-COUNT- L..22):= VALUE (l..LAST);
exception

when TEXTIO.ENDERROR =>
ENDOF_FILE - true;

end GETSN;

-PROCEDURE GETDESCRIPTION
- This procedure gets the description of the asset from the not found file that was ceated during
- the inventory. The description is returned to the procedure FORMATEXCEPTION_FILE to
- be processed into exception report.

83

procedure GET-DESCRIPTION (ASSETDESCRIPTION : out STRING) is

VALUE: STRING (1..30);
LAST : NATURAL;

begin
TEXTIO.GET_LINE (READEROUTFILE, VALUE, LAST);
for I in LAST+L..30 loop

VALUE(I..I):="";
end loop;
ASSETDESCRIPTION = VALUE;

exception
when TEXT_IO.ENDERROR =>

ENDOFFILE:= true;

end GETDESCRIPTION;

-PROCEDURE GETLOCATION
-- This procedure gets the location of the asset from the not found file that was created during
-- the inventory. The location is returned to the procedure FORMATEXCEPTION_FILE to be
- processed into the exception report.

procedure GETLOCATION (ASSET-LOCATION : out STRING) is

VALUE: STRING (L..18);
LAST NATURAL;

begin
TEXT_IO.GETLINE (READEROUTFILE, VALUE, LAST);
for I in LAST+ I..18 loop

VALUE(I..I):=";

end loop;
ASSET_LOCATION = VALUE;

exception
when TEXT_IO.END_ERROR =>

ENDOFFILE = true;

end GETLOCATION;

84

-FUNCTION ENDOFFILE
-- This function returns the ENDOFFILE flag variable.

function ENDOF_FILE return BOOLEAN is

begin
return ENDOFFILE;

end ENDOF_FILE;

end READER-OUTPUT;

85

- TITLE ; REPORT package definition specifications
- NAME Richard Hancock
- DATE : 28 July 1993
- DESCRIPTION : This package contains all operations associawd with the object report

: REPORT is a file that repliates the orignial CMRL but the serial
: numbers that were found during the inventory were annotated with a flag.
: XREPORT is a fMle that conains assets that were found during the
: inventory but were not on the CMRL. This report contains the serial

-- number, descriptio and location of the assets. The operations contained
: in this package are CREATE, CLOSE, ADD LINE and
: FORMATEXCEPTION_REPORT. A detailed description of each of
: ti.,se operations are contained in the Package Body.

with TEXTIO; use TEXT IO;

package REPORT is

procedure CREATE (NAME: in STRING);

procedure CLOSE (NAME in STRING);

procedure ADDLINE (LINE: in STRING);

procedure FORMATEXCEPTIONREPORT;

CREATEERROR: exception;

CLOSEERROR : exception;

end REPORT;

86

- TITLE REPORT package definition body
-- NAME Richard Hancock
-DATE :28 July 1993
- DESCRIPTION This package contains all operations associated with the object repot.
-- : REPORT is a file that replicates the orignial CMRL but the serial
-- :numbers that were found during the inventory were annotated with a flag.

XREPORT is a file that contains assets that were found during the
inventory but were not on the CMRL. This report contains the serial
number, description and location of the assets. The operations contained

-- : in this package are CREATE, CLOSE, ADD LINE and
FORMATEXCEPTIONREPORT. A detailed description of each of

-- : these operations are contained in the Package Body.

with TEXTIO; use TEXT_10;

package body REPORT is

REPORTFILE FILETYPE;
MORESERIAL_NUMBERS : BOOLEAN := FALSE;
SNCOUNT I INTEGER::= 0;

-------------------------------------- PROCEDURE CREATE ----------------- ------

-- This procedure creates the output report file with the given name and sets the default output to
-- that file.

procedure CREATE (NAME : in STRING) is

begin
TEXTIO.CREATE (REPORTFILE, OUT-FILE, NAME);
TEXT_IO.SET_OUTPUT (REPORT-FILE);

exception
when others =>

raise CREATE_ERROR;

end CREATE;

S-.-.-------------------------- PROCEDURE CLOSE------ ---

- This procedure closes the CMRL report file of the given name and sets the default output back
- to standard output (ie monitor).

87

procedure CLOSE (NAME : in STRING) is

begin
CLOSE (REPORTFILE);
TEXTI0.SETOUTPUT (TEXTIO.STANDARDOUTPUT);

exception
when others =>

raise CLOSE-ERROR;

end CLOSE;

----C -PROCEDURE ADDLINE
- This procedure adds a line to the CMRL report file.

procedure ADD_LINE (LINE: in STRING) is

begin
PUTLINE (REPORTFILE, LINE);

end ADDLINE;

---- -PROCEDURE FORMAT_EXCEPTIONREPORT------
- This procedure formats the exception report.

procedure FORMAT_EXCEPTIONREPORT is

TITLE STRING (L.. 16):= "EXCEPTION REPORT";
HEADERI STRING (1..13):= "Serial Number";
HEADER2 STRING (1..I 1):= "Description";
HEADER3 STRING (1..8):= "Location";

begin
NEWLINE(3);
SETCOL(32);
PUTLINE(TITLE);
NEWLINE(2);
SETLCOL(10);
PUT(HEADER1);
SETCOL(28);
PUT(HEADER2);
SETCOL(62);
PUTIJNE(HEADER3);
NEWLINE;

end FORMATEXCEPTIONREPORT;

end REPORT;

88

-- TITLE : Serial Number Array definition package specifications
-- NAME Richard Hancock
-- DATE :17 July 1993
-- DESCRIPTION : This package contains all operations associated with the object Serial

Number Array. This object was not developed during the design phase,
but was created to help with the implementation of the system. This

: object: is used to sort the serial number files and flag a serial number as
found. The package contains operations that will CREATE an aray,
INSERT a serial number into the array, SORT an array by value, SORT
an array by initial file position, MARK a serial number as found, and
removes as serial number from the Army. A detailed description of each
of the operations is provided in the package body.

with SERIALNUMBERS; use SERIALNUMBERS;

package SNARRAY is

type ARRAYRECORD is
record

DATA : SERIAL-NUMBER;
KEY : INTEGER;

end record;

type SERARRAY is array (INTEGER RANGE <>) of ARRAYRECORD;
type ARRAYPOINTER is access SERARRAY;

procedure CREATEARRAY (SNCOUNT : in INTEGER; ARRPTR : out
ARRAYPOINTER);

procedure INSERTSN (INDEX : in INTEGER; VALUE : in SERIAL,_NUMBER;
ARRPTR : in ARRAYPOINTER);

procedure SORTBYVALUE(ARRAY_SIZE : in INTEGER; ARRPTR : in
ARRAYPOINTER);

procedure SORTBYKEY (ARRAYSIZE : in INTEGER; ARRPTR : in
ARRAY_POINTER);

procedure MARKSNFOUND (SNSTR : in STRING; ARRPTR : in
ARRAYPOINTER);

function REMOVESN (INDEX : in INTEGER; ARRPTR : in ARRAYPOINTER)
return SERIALNUMBER;

end SNARRAY;

89

- TITLE Serial Number Array definition package body
- NAME Richard Hancock
- DATE :17 July 1993
- DESCRIPTION This package contains all operations associated with the object Serial

Number Array. This object was not developed during the design phase,
but was created to help with the implementation of the system. This

-- : object is used to sort the serial number fdes and flag a serial number as
found. The package contains operations that will CREATE an array,

-- :INSERT a serial number into the array, SORT an array by value, SORT
an array by initial f'Me position, MARK a serial number as found, and
removes a serial number from the Array. A detailed description of each
of the operations is provided in the package body.

with TEXTIO; use TEXTIO;

package body SNARRAY is

-PROCEDURE CREATE_ARRAY-------
-- This procedure creates an array with a size equal to the number of serial numbers found in the
-- CMRL. The procedure returns an array pointer to the calling procedure, which points to the
-- memory location of the array. This pointer allows us to access and preserve the contents of
-- the array after a procedure is closed. This is a benefit because we do not have to pass an entire
-- array from procedure to procedure, which could result in the data being erroneously
-- modified.

procedure CREATEARRAY (SNCOUNT: in INTEGER; ARR_PTR: out
ARRAYPOINTER) is

begin
ARR_PTR:= new SERARRAY (l..SNCOUNT);

end CREATEARRAY;

PROCEDURE INSERT_SN-----------
-- This procedure inserts the serial number value and the original rile position of the serial

- number into an array record element The file position is saved for when we put the serial
-- numbers back in the CMRL with a found flag.

90

procedure INSERTLSN (INDEX: in INTEGER; VALUE: in SERIAL_NUMBER;
ARRPTR: in ARRAYPOINTER) is

begin
ARRPTR(INDEX).DATA:= VALUE;
ARR-PTR(INDEX).KEY := INDEX;

end INSERTSN;

--- PROCEDURE SORTBYVALUE
This procedure conducts a shell sort of the array by serial number value, placing the serial

- numbers in ascending alpha-numeric order. This procedure was obtained from a book called
- ALGORITHMS written by ROBERT SEDGEWICK (1984). This procedure is found on
- page 98.

procedure SORT_BY_VAIUE (ARRAY- SIZE: in INTEGER; ARRPTR: in
ARRAY-POINTER) is

TEMPREC: ARRAY_RECORD;
TEMPSN : SERIALNUMBER;
H, J INTEGER;

begin
H:= I;
loop

H:= 3*H+I;
exit when H > ARRAY-SIZE;

end loop;
loop

H :=H/3;
for I in H+ .. ARRAYSIZE loop

TEMPREC - AR&.PTR (I);
TEMPSN:= ARRPTR(I).DATA;
J:=I1;

while ARR PTR(J-H).DATA > TEMPSN loop
ARR_PTR (J) = ARRPTR (J-H);
J := J-H;
exit when J <= H;

end loop;
ARRPTR (J) TEMPREC;

end loop;
exit when H = 1;

end loop;

91 ".

exception
when CONSTRAINTERROR =>

textio.putline (standard-output, "-CONSTRAINTERROR in
ARRAYSORTBYBALUE procedure.-");

end SORT_BY_VALUE;

-PROCEDURE SORT_BY._KEY
- This procedure conducts a shell sort of an array by key, which places the serial numbers back
- in the order that they were read in from the CMRL file. This procedure was obtained from a
- book called ALGORITHMS written by ROBERT SEDGEWICK (1984). This procedure is
- found on page 98.

procedure SORTBYKEY (ARRAYSIZE: in INTEGER; ARR_PTR: in
ARRAYPOINTER) is

TEMP_REC ARRAYRECORD;
TEMPKEY INTEGER;
H, J INTEGER;

begin
H:=I1;

loop
H:= 3*H+I;
exit when H > ARRAYSIZE;

end loop;
loop

H :=-H/3;
for I in H+1..ARRAYSIZE loop

TEMPREC ARR_PTR (1);
TEMP_KEY ARRPTR(I).KEY;
J -- I;
while ARRPTR(J-H).KEY > TEMP_KEY loop

ARR_- PTR (J) := ARRYPTR (J-H);
J .- J-H;
exit when J <- H;

end loop;
ARR_PTR (J) -- TEMPREC;

end loop;
exit when H = 1;

end loop;

92

exception

when CONSTRAINT_ERROR =>
textJo.puLline (standard-output, "- CONSTRAIN_ERROR in ARRAY

SORT_BY_KEY procedure.-");

end SORTBYKEY;

-PROCEDURE MARKFOUND
- This procedure is passed a serial number (string of 22 chars). The procedure opens the serial
-- number array and sea.ches the array for a serial number that matches. When a match is
-- found the MARK procedure in the package SERIAL NUMBERS is called and appends a
-- flag to the end of the serial number. This serial number is then placed back into the array

procedure MARKSN_FOUND (SNSTR:in STRING; ARR_PTR:in ARRAYPOINTER) is

I :INTEGER = 1;
VALUE STRING (L..22);

begin
VALUE:= SERIALNUMBERS.VALUE (ARRPTR (I).DATA);
while (VALUE (22..22) = "F") or (SNSTR /= SERIALNUMBERS.VALUE (ARRPTR

(I).DATA)) loop
I:=I+ 1;
VALUE:= SERIALNUMBERS.VALUE (ARR&PTR (I).DATA);

end loop;
SERIAL_NUMBERS.MARK (ARRPTR(I).DATA);

exception

when CONSTRAINTERROR =>
text-io.putjline (standardoutput, "-CONSTRAINTERROR in ARRAY

MARKSN_FOUND procedure.--");

end MARKSN_FOUND;

93

------- �FUNCTION REMOVESN--
- This function given an index value and the location of an array goes into the array and returns
- the serial number value found in the position specified by the index value.

flmction REMOVESN (INDEX: in INTEGER; ARRPTR: in ARRAYPOINTER)
return SERIALNUMBER is

begin
return ARRPTR(INDEX).DATA;

end REMOVESN;

end SN.ARRAY;

94

-- TITLE : SERIAL NUMBERS package definition specifications
-- NAME Richard Hancock
-DATE :28 July 1993
-- DESCRIPTION : This package contains all operations associated with the object serial

: numbers. Serial numbers are alphanumerc and can be up to 23
-- : characters in length. This package defines serial numbers as a private

: type to enhance the object oriented principle of information hiding. By
: declaring serial numbers a private type we limit the operations that can be
: performed on serial numbers outside this package. The operations
: contained in this package are: CREATE (converts type string to type
: serial number), MARK (places a flag at the end of found serial numbers),

-- : VALUE (converts type serial number to type string), and ">" (compares
-- : two serial numbers and returns a boolean). A detailed description of each

: of these operations are provided in the Package Body.

package SERIALNUMBERS is

type SERIALNUMBER is private;

procedure CREATE (VALUE: in STRING; SN : out SERIALNUMBER);

procedure MARK (SN : in out SERIALNUMBER);

function VALUE (SN : SERIALNUMBER) return STRING;

function ">" (SN 1,SN2 : in SERIALNUMBER) return BOOLEAN;

private type SERIAL._NUMBER is
record

VALUE: STRING (1..22);
end record;

end SERIALNUMBERS;

95

- TITLE : SERIAL NUMBERS package definition body
- NAME : Richard Hancock
- DATE :28 July 1993
- DESCRIPTION : This package contains all operations associated with the object serial

: number. Serial numbers are alphaumer and can be up to 23 dractes
: in length. This package defines serial numbmrs as a pivate type to
: enhance the object oriented principle of information hiding. By declaring
: serial numbers a private type we limit the operations that can be
: performed on serial numbers outside this package. The opwatons
: contained in this package are CREATE (converts type string to type
: serial number), MARK (places a flag at the end of found serial numbers)
: and VALUE (converts type serial number to type string). A detailed
: description of each of these operations are provided in the Package Body

with TEXT_1O; use TEXTIO;

package body SERIAL_NUMBERS is

--- --------- PROCEDURE CREATE---
-- This procedure accepts a serial number value (of type string) and creates a new serial number
-- (of private type serial number) with the same value. This preserves the integrity of the serial
- numbers because using this type limits the operations performed outside this package.

procedure CREATE (VALUE : in STRING; SN : out SERIALNUMBER) is

begin

SN.VALUE := VALUE;

end CREATE;

•-PROCEDURE MARK
- This procedure removes two blanks from the front of the serial number and appends a blank
- and an F to flag the serial number as found. This procedure assumes the length of a serial
- number will not exceed 22 characters.

procedure MARK (SN : in out SERIALNUMBER) is

begin
SN.VALUE SN.VALUE (3..22) & " F";

end MARK;

96

-- NCTION VALUE--
- This function accepts a serial number (of private type serial number) and converts it to type
- string. This is necessary so we can perform necessary functions to the serial number outside
-- this package.

function VALUE (SN : SERIALNUMBER) return STRING is

begin

return SN.VALUE;

end VALUE;

--.-..--------------------------- FUNCTION ">"-------------------- -------
-- This function is used to compare the values of two serial numbers and return a boolean value
-- if the finst serial number is greater that the second. This function is used in the Package
-- SNARRAY during the procedure SORIBY-VALUE.

function ">" (SN I ,SN2: in SERIALNUMBER) return BOOLEAN is

begin
return SNI.VALUE > SN2.VALUE;

end ">";

end SERIAL._NU'MBI-RS:

97

APPMDIX B

BCIS USER'S KINUNAL

A. IZTRODCTION

The Bar Code Inventory System (BCIS) is an automated

inventory system designed to provide Marine Corps Systems Command

(MARCORSYSCOM) with an efficient and effective tool with which to

manage the unit's serialized assets.

The following special topics are presented to facilitate

introduction to this system:

1. INSTALLATION AND SETUP
2. STARTING THE SYSTEM
3. DOWNLOAD FILE TO BAR CODE READER
4. CONDUCTING AN INVENTORY
5. UPLOADING INVENTORY RESULTS
6. PRINTING REPORTS
7. PRINTING BAR CODE LABELS

B. INSTALLATION AND SZTUP

1. Compatibility and Requirements

The BCIS is compatible with any IBM personal computer or

IBM compatible personal computer. In addition, the BCIS requires

the following configuration:

1. MS-DOS or PC-DOS (Versions 5.0 or 6.0).
2. 640K RAM (UM recommended).
3. Two serial ports and one parallel port
4. Intermec Bar Code Reader
5. Intermec Bar Code Printer
6. 10-9 Null Modem Cable
7. 25-Pin Printer to PC Cable
8. Visible Laser Scanner

98

2. Installation

To install the Bar Code Inventory System on a personal

computer, place the BCIS diskette in B drive (or Drive A) of the

computer and type B:\IMSTALL (or A:\INSTALL). The install

program will create four directories on the computer's hard drive

and copy the system programs to those directories. When the

installation process is complete check the computer's hard drive

for the following directories and programs:

BCIS
BCIS .COM
BATCHKEY. COM
CLRSCR .COM
TEXTOUT . COM
SETPOS .COM
DRAWBOX . COM

BCIS/ADA
CMR_RPT . EXE
DOWNLOAD . EXE
PRNBATCH. EXE
X_REPORT .EXE
PRNINDIV.EXE

IWTRSCAN
README
COMMDRV . EXE
INTRSCAN. EXE
PCHOST .EXE
TERMDRV . EXE
UTILDRV . EXE
INV .IRL
INTRSCAN. INI

PCIRL
PCIRL .EXE
PIPE .EXE
README
PCIRL .CFN
BCIS .IRL
INV .IRL

99

In addition to the system files, a file called

PCDRIVER.SYS will be added to the computer's Root directory.

PCDRIVER.SYS is a PCIRL device driver that will manage the

communication protocol for uploading and downloading programs and

files.

3. Setup

Before PCIRL can be utilized, ANSI.SYS must be added to

the Root directory and two lines must be added to the CONFIG.SYS

File. ANSI.SYS is a DOS device driver that will manage the PCIRL

screen output.

To add the required lines to the CONFIG.SYS file, perform

the following steps:

1. Move to the Root directory by typing CD\.

2. At the DOS prompt, type EDIT CONFIG.SYS.

3. Press [Enter].

4. At the end of the CONFIG.SYS lines, type the following:
DEVICE=ANSI.SYS.

5. Press [Enter].

6. On the next line, type DEVICE=PCDRIVER.SYS.

7. Press [Enter].

8. Press [Alt] to activate the menu. Use the arrow keys to
select FILE and press [Enter].

9. Select SAVE and press [Enter].

10. Press [Alt] to activate the menu. Use the arrow keys to
select FILE and press [Enter].

11. Select EXIT and press [Enter].

100

12. At the DOS prompt, type the following: TYPE COUFIG.SYS.

13. Press [Enter].

14. Verify that CONFIG.SYS now includes the two required
lines:

DEVICE=ANSI . SYS
DEVICE=PCDRIVER. SYS

15. Reboot the computer by pressing[Ctrl]-EAltI-[Del].

C. STARTING THE SYSTUE

To initiate the Bar Code Inventory System, move to the BCIS

directory by typing CD\BCIS. The system starts when BCIS is

entered at the >C:\BCIS prompt.

Once in the Bar Code Inventory System, the user is directed

to the Main Menu. Figure B.1 illustrates the options available

to the user. To navigate through the system, type the number in

front of the desired option. For example, to exit the system

press [5] and hit [Enter].

BAR CODE INVENTORY SYSTEM

1. Download File to Reader

2. Receive Inventory Results

3. Print Reports

4. Print Bar Code Labels

5. Exit to DOS

ENTER (1..5)

FIGURE B.1 Main Menu

101

D. DOMNLOAD FILE TO BAR CODE RZADUR

This portion of the system extracts the serial numbers from

the CMR Listing and creates a serial number file. The file is

formatted for the reader and is passed to the PCIRL directory for

download. After the file is downloaded to the reader, the user

is returned to the Main Menu, (see Figure B.1). The serial

number file must be downloaded to the reader before conducting an

inventory.

1. Establish a Connection

Before commencing the download portion of the system,

connect the male end of the of the 10-9 Null Modem Cable into the

reader's communication dock and the female end into the COM1 port

of the personal computer.

2. Set Protocol On Reader

The communication protocol, on the reader, must be set to

NPOLLING MODE DO before downloading a file. The following

example illustrates the steps required to set the reader's

protocol to "POLLING MODE DO:

1. Press the reader's ON-OFF key to turn the reader on.

2. At the OREADYN prompt, press [Ctrl]-[E] to enter
configuration mode. The prompt in Figure B.2 appears
on the reader's screen:

CONFIGURATION MENU:
Press <?> for help,
<ENTER> to continue
<CNTRL-Z> to exit

FIGURE B.2 Reader Configuration Prompt

102

3. Press [JUTMJ to continue. The prompt in Figure B.3
appears:

CONFIGURATION MENU:
Select or modify
bar codes?
NO

FIE M B.3 Bar Cod. Option

4. Press [ENTER] for no. The screen in Figure B.4
appears:

CONFIGURATION MENU:
Select or modify
operating parms?
NO

FIGURE B.4 Operating Parameter Option

5. Press [ENUTER] for no. The screen in Figure B.5
appears:

CONFIGURATION MENU:
Select or modify
comm protocol?
NO (now=PT. TO PT.)

FIGURE B.5 Comm Protocol Option

6. Press [SPACE] twice to change to "POLLING MODE DO
Protocol.

7. Press [Alt]-[E] to save changes and exit
Configuration Menu.

103

3. Place CNR Listing in Proper Directory

Before selecting the download option from the Main Menu,

the CMR Listing must be copied to the BCIS\ADA directory under

the File Name CQIDL. If this step is not accomplished prior to

initiating download, the user will receive a quick error message

and the program will return to the main menu.

4. Initiating Download Option

Once the QIRL File is copied to the DCIS\ADA directory,

the download can be started by pressing [2] then [Enter]. The

system will then display a message that Serial Numbers are being

extracted from the CMR.

When all the serial numbers have been extricted from the

CMR the screen in Figure B.6 will be displayed. This screen is

the PCIRL Set-Up Screen. To proceed with downloading the file to

PC-IRL is now ready for a FUNCTION select Ion.

FUNCTION names are listed in the top line of the display.
Some hove Options which will appear in drop-down *enus
when a FUNCTION is selected. For a description of the

FUNCTIONs and their Options, select INFO. Uhen more Help
is available, the Help key (FIl] is displayed.

)> To select a FUNCTION:
- Hold down the [Rlt] key.
- Press the first letter in the FUNCTION name.

>> To select on Opt ion from a drop-down menu:
- Press the first letter in the Option name.

>> To clear this screen, press the [Esci key.

PC-IAL DEUELOPMENT SOFTUARE
PROGRAM 049318.-
COPYRIGHT (c) 1987
INTERIEC CORPORATION
All rights reserved.

FIGURE B.6 PCIRL Set-Up Screen

104

the reader, this screen must be cleared before a function can be

selected. To clear the Set-Up Screen press (Esc].

5. Configure PCIRL for Comanication

The first time the Bar Code Inventory System is used,

PCIRL must be configured prior to downloading the file. To

select the CONFIG function enter (Alt]-[CJ. Verify that the

CONFIG Screen looks like Figure B.7. To make configuration

changes, use the arrow keys to move to the appropriate field and

manually enter the correct setting.

COMP11 I G-

Text editor file noae .s (PIPE.EXE included in PC-IRL)

Compile error destination L (E - IRE, L - IAL)

Reader display line count 4 (up to 4)
line length 20 (up to 20)

Transmit output to IRX
file during Run/Debug (Y or N)

Uplood/Dounlood Parameters:
Transfer via controller? . N (Y or N)

Baud rate 9600 (9600,4000,2400,1200,600,300)
Parity E (E. 0 or I)

Data bits 7 (7 or 6)

Stop bits 1 (1 or 2)
Compile before Download? .. Y (Y or N)
Compact before Download? N (Y or N)

Target EPROM selection I (1 • GI, 2 - Hitachi, 3 - TI,
4 * Intel, 5 - NEC)

F2

FIG B.7 PCIRL Configuration Screen

6. Downloading File to Reader

After configuring PCIRL, move to the LOAD function by

pressing [Alt]-[L]. This creates a drop-down menu as depicted in

Figure B.8. Select [D] for download and type READIN for the

105

LORD
Upload
Coon I cad
Format
Transfee

Oefoult Oirectory R:\
SAnfPLE.IRL TEST.IRL

FIGURE B. 8 PCIRL Load Screen

download file name. Using the down arrow, move to the file

destination field and enter [A]. Turn the bar code reader on by

Pressing the [ON-OFF] key and wait for the ready prompt. Hit

[ENTER] on the computer keyboard and PCIRL will download the file

to the reader. The download process is finished when PCIRL

displays the message *DOWNLOAD COMPLETE... in the lower right

corner of the screen. Enter [F2] to exit the download menu and

[Alt]-[Q] to return to the BCIS Main Menu. This completes the

download portion of the system.

E. CONDUCTING THE INVENTORY

This portion of the system is performed with the bar code

reader. The reader scans bar code labels affixed to the

serialized assets and checks to see if the asset is on the CMR.

If the asset inventoried is on the CMR the serial number is

recorded in the Found File. If the asset is not on the CMR the

106

user is prompted to enter a description and location of the

asset. This information along with the serial number is then

recorded in the Not Found File.

To begin the inventory, connect the laser scanner to the bar

code reader. Press the (ON-OFF] key to turn the reader on and

wait for the ready prompt. At the ready prompt enter

[Ctrl]-[[Z19] [B]. Press the [Ctrl] and JEWT=] keys

simultaneously and then press [B]. This key sequence initiates

the IRL program stored in the reader's memory. When the program

is initiated the prompt in Figure B.9 appears on the screen:

MARCORSYSCOM
INVENTORY

FIGURE B.9 Start of Program Screen

After three seconds the screen clears and the user is presented

with the prompt in Figure B.10:

ENTER SERIAL # OR
F3 TO TRANSMIT FILES

FIGURE B.10 Enter Serial Number or Transmit Prompt

At this prompt, the user scans or manually enters the serial

number of the asset being inventoried. If the asset inventoried

is on the CMR the user is returned to the prompt in Figure B.10.

107

If the asset inventoried is not on the CMR the reader emits a

sequence of beeps and the screen depicted in Figure B.11 appears:

ITEM NOT ON CMR

FIGKRE B. 11 Item Not On Inventory Screen

After three seconds, the screen is cleared and the user is

presented with the prompts illustrated in Figures B.12 and B.13.

ENTER DESCRIPTION
OF THE ASSET

FIGURE B.12 Enter Description Prompt

At these prompts, manually enter the description and location

of the asset just inventoried. After this information is

recorded, the user is returned to the Enter Serial Number Prompt.

This process is continued until the inventory is completed.

ENTER LOCATION
OF THE ASSET

FIGURE B.-13 Enter Location Prompt

If the reader is turned off during the inventory, the data is

not lost. To resuit Lne inventory, press the [ON-OFF) key and at

108

the ready prompt enter [Ctrl]-[ESE] [B]. The IRL program is

resumed and the user can continue the inventory.

F. RICEIVE INVENTORY RES MTS

This phase of the system uploads the results of an inventory

from the reader to the personal computer. The results are then

processed and two reports are created, the CMR Report and the

Exception Report.

To Receive the inventory results, select option [2] from the

Main Menu, (see Figure B.1). Press [ENTER] and the Receive File

Option Menu appears, (Figure B.14).

This Menu allows the user to select which file to upload--the

Found or Not Found File--or to upload both files. The proper

selection depends on the needs of the user.

RECEIVE FILE OPTIONS

1. Receive Found Aile

2. Receive Not Found File

3. Receive Both Files

4. Exit to Main Menu

ENTER (1..4)

FIGURE D.14 Receive File Options Menu

109

1. Receive Found File

If all the assets inventoried were on the CMR (i.e., the

Not Found File is empty), select option [il and press [WI'U].

The Interscan Menu illustrated in Figure B.15 will appear on the

screen.

UInteo-can Version 1.2 K

(721 - Netuerk Comnmication

(7F2 - leader Communmiction

(7I3 - Terminal Ceesmicstlen

(741 - Interscan File Tra.nmit

(CP1 - Interscan File Receive

(712 - ltades-Printer Utilities

(Escl Exit I EFM2 Local 1 (3F8 DOS I (gi) Films I (F1i) setup

Select Function Key

FIGGUR B.15 Interecan Interactive Mode Menu

The first time the Bar Code Inventory System is used,

Intrscan must be configured prior to uploading a file. To

configure the Intrscan software for communication with a reader

refer to the Configure Intrscan Section, at the end of Section F.

Select (F2] for reader communication and the Intrscan

Communication Screen will appear, (Figure B.16). When in this

screen the computer is ready to receive the Found File.

110

Before uploading the file to the computer, connect the

male end of the of the 10-9 Null Modem Cable into the reader's

communication dock and the female end into the COM1 port of the

personal computer.

o Inters•an Devies Dri,.r *

flng) 97-6Z-1991 15:53:84 Communication Initiated

(Esc) Exit I (FI) Format I EF23 IRL I CF3) Data I CF16] Trace On

Communication In Process

FIGURE B.16 Interecan Coumuzdcation Screen

Turn the bar code reader on and at the 'READY PROMPT"

type [Ctrl]-[(I2TI'] [B] to start the program. The start of

program screen, (see Figure B.9), will appear for three seconds

followed by the *enter serial number or F3 to transmit"

prompt, (see Figure B.10). At this prompt enter [73] to transmit

and the screen in Figure B.17 will appear.

ENTER TO XMIT
Fl- FOUND FILE
F2- NOT FOUND FILE

FIla B.17 Tranmit Screen

111

Enter IF1] at this prompt and the reader will upload the

file to the computer. The serial numbers will scroll down the

Intermec Communication Screen (Figure B.16). The serial numbers

will be stored in a file called Found on the personal computer.

The upload is complete when serial numbers stop scrolling across

the computer screen.

Press [Zsc] twice and the program will process the serial

numbers in the Found file and create the CMR Report. When the

CMR Report is finished the user is returned to the Receive File

Options Menu, (Figure B.14).

2. Receive Not Found File

This option uploads the Not Found File from the bar code

reader and creates an Exception Report. The Exception Report is

a listing of all of the serial numbers found during the inventory

that are not on the CMR. A short description and the location of

the item is also provided.

To initiate this option press [2] then [DITS] from the

Receive File Options Menu, (see Figure B.14). The Intrscan Menu

illustrated in Figure B.15 will appear on the screen.

The first time the Bar Code Inventory System is used,

Intrscan must be configured prior to uploading a file. To

configure the Intrscan software for communication with a reader

refer to the Configure Intrscan Section, at the end of Section F.

112

Select [72] for reader communication and the Intrscan

Communication Screen will appear, (see Figure B.16). When in

this screen the computer is ready to receive a File.

Before uploading the file to the computer, connect the

male end of the of the 10-9 Null Modem Cable into the reader's

communication dock and the female end into the COM1 port of the

personal computer.

Turn the bar code reader on and at the *ready prompt*

type [Ctrl]--[Z•TR] [B] to start the program. The Start of

Program screen, (see Figure B.9), will appear for three seconds

followed by the menter serial number or F3 to transmite

prompt, (see Figure B.10). At this prompt enter (I3] to transmit

and the screen in Figure B.17 will appear.

Enter [F2] to transmit the Not Found File and the reader

will upload the file to the computer. The data uploaded will

scroll down the Intermec Communication Screen (see Figure B.16).

This information will be stored in a file called NoFind on the

personal computer. The upload is complete when the data stops

scrolling down the computer screen.

Press [Msc] twice and the program will process the

information in the NoFind file and create an Exception Report.

When the Exception Report is finished the user is returned to the

Receive File Options Menu, (see Figure B.14).

113

3. Receive Both File&

This option uploads the Found and Not Found File from the

bar code reader and creates both the CMR and Exception Reports.

To initiate this option press [3) then [lITlM] from the Receive

File Options Menu, (see Figure B.14). The Intrscan Menu

illustrated in Figure B.15 will appear on the screen.

The first time the Bar Code Inventory System is used,

Intrscan must be configured prior to uploading a file. To

configure the Intrscan software for communication with a reader

refer to the Configure Intrscan Section, at the end of Section F.

Select [F2] for reader communication and the Intrscan

Communication Screen will appear, (see Figure B.16). When in

this screen the computer is ready to receive a File.

Before uploading the file to the computer, connect the

male end of the of the 10-9 Null Modem Cable into the reader's

communication dock and the female end into the COM1 port of the

personal computer.

Turn the bar code reader on and at the "READY PROMPTN

type [CtrlJ-[(TMJ] [B] to start the program. The Start of

Program screen, (see Figure B.9), will appear for three seconds

followed by the "enter serial number or F3 to transmitm

prompt, (see Figure B.10). At this prompt enter [r3] to transmit

and the screen in Figure B.17 will appear.

Enter (F1] to transmit the Found File and the reader will

upload the file to the computer. When the serial numbers stop

114

scrolling down the Intermec Communication Screen (see Figure

B.16) the file is uploaded. At the "ENTER SERIAL NUMBER OR F38

prompt enter [F3]. Press [72] and the Not Found File will be

transmitted to the computer. The upload is complete when the

data stops scrolling down the computer screen.

Press (Eac] twice and the program will process the

received information into the CMR and Exception Reports. When

the Reports are created the user is returned to the Receive File

Options Menu, (see Figure B.14).

4. Configure Interscan for Coannmication

To enter the Configuration Menu, select [F10] from the

Interactive Mode Menu, (see Figure B.15). The Configuration Menu

is illustrated in Figure B.18. Use the [SPACE] key to change the

options, the [ENTER] key to move to the next field, and the

[Bksp] key to move to the prior field. Change the options on the

screen to match Figure B.18 and enter [Esc] to return to the

Interactive Mode Menu.

G. PRINT REPORTS

This option allow the user to print the CMR and Exception

Reports. At the Bar Code Inventory System Main Menu type (3]

then [ENTER]. The Print Report Options Menu, illustrated in

figure B.19 will appear.

This Menu allows the user to select which Report to

print--the CMR Report or Exception Report--or to print both

115

I * Interscan Configuration *

Coml Device - Reader Com2 Device - Printer
Speed - 9600 Speed - 9600
Parity - E Parity - E
Data Bits - 7 Data Bits - 7
Stop Bits - 1 Stop Bits - 1

Text Color - 7 Log File Enable - Off
Border Color - 7 Trace - On

Modem Command - Tone Host Receive EOM - <CR><LF>
Modem No. Prefix - None Host Transmit EOM - <CR><LF>

[Esc]-Exit [Space]-Options lEnter]-Next Prompt [Bksp]-Last

Options for Configuration

FIGURE B.18 Interscan Configuration Menu

PRINT REPORT OPTIONS

1. Print CMR Report

2. Print Exception Report

3. Print Both Reports

4. Exit to Main Menu

ENTER (1..4)

FIGURE B.19 Print Report Options Menu

116

Reports. To select which report to print type the number in

front of the desired option and press [fhTUR]. The proper

selection depends on the desires of the user.

H. PRINT BAR CODE LABELS

This option prints the bar code labels that will be attached

to the serialized assets. At the Main Menu type [4] then [DUTrU]

to access the Print Bar Code Label Menu, (Figure B.20).

PRINT BAR CODE LABEL OPTIONS

1. Print Batch Labels

2. Print Individual Labels

3. Exit to Main Menu

ENTER (1..3)

FIGURE B.20 Print Bar Code Le el Options Menu

Before printing any labels, connect the female end of the of

the 25-Pin printer cable into the printer's interface connector

port and the male end into the COM2 port of the personal

computer.

The Print Batch Labels option allows the user to print bar

code labels for all the assets on the CMR. Before selecting this

117

option, the CMRL file must be placed in the BCIS\ADA directory.

To execute this option type Ell then [UTUJ.

The Print Individual Labels option allow the user to print

individual labels. When a new asset arrives, the user can select

this option to create a new label and affix this label to the

item. To execute this option type [2] then (ENTER]. The prompt

is figure B.21 will appear on the screen.

At this prompt, type the serial number of the asset and hit

CENTER]. A bar code label will be printed and figure B.21 will

return to the screen. To return to the Print Bar Code Label

Options type QUIT instead of a serial number.

ENTER A SERIAL NUMBER OR 'QUIT- TO EXIT

rig=B.21 Individual Label Prompt

I. EXIT THE SYSTEM

To exit the Bar Code Inventory System, select the option to

return to the Main Menu. At this screen type [5] then [DflM]

and the user will be returned to the DOS prompt.

118

LIST OF REVIRNCES

Page-Jones, M., Practical Guide to Structured Systems Design,
2nd ed., Prentice-Hall, Inc., 1988.

Pressman, R.S., Software Engineering: A Practitioner's Approach,
3rd ed., McGraw-Hill, Inc., 1992.

Sedgewick, R., Algorithms, Addison-Wesley Publishing Company,
Inc., 1984.

Whitten, J.L., Bentley, L.D., and Barlow, V.M., Systems Analysis
and Design Methods, 2nd ed., Irwin, Inc., 1989.

119

INITIAL DISTRIBU'TION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4. Director ISMD 1
MARCORSYSCOM
2033 Barnett Avenue, Suite 315
Quantico, VA 22134-5010

5. Professor William Haga, Code AS/HA 1
Naval Postgraduate School
Monterey, CA 93943-5002

6. Professor Shu S. Liao, Code AS/LC 1
Naval Postgraduate School
Monterey, CA 93943-5002

7. Computer Technology Programs, Code 370 1
Naval Postgraduate School
Monterey, CA 93943-5002

8. Capt. Richard M. Hancock 1
206 Greensview Drive
Cary, NC 27511

120

